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Atomic Transactions

C H A P T E R

5

5.1 Introduction
In Chapter 4, I described mutual exclusion as a mechanism for ensuring that an object
undergoes a sequence of invariant-preserving transformations and hence is left in a
state where the invariant holds. (Such states are called consistent states.) In particular,
this was the idea behind monitors. Any monitor object is constructed in a consistent
state. Any public operation on the monitor object will work correctly when invoked in
a consistent state and will reestablish the invariant before returning. No interleaving of
actions from different monitor operations is allowed, so the monitor’s state advances
from one consistent state to the next.

In this chapter, I will continue on the same theme of invariant-preserving state
transformations. This time through, though, I will address two issues I ignored in
Chapter 4:

1. Some invariants span multiple objects; rather than transforming a single object
from a consistent state to another consistent state, you may need to transform
a whole system of objects from one consistent state to the next. For example,
suppose you use objects to form a rooted tree, with each object knowing its parent
and its children, as shown in Figure 5.1. An invariant is that X has Y as a child if

! 123 "
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(a) (b) (c)

Parent points to child Child points to parent
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Figure 5.1 Rooted trees with pointers to children and parents: (a) example satisfying the invariant;
(b) invariant violated because E’s parent is now C, but E is still a child of D and not of C; (c) invariant
restored because the only child pointer leading to E again agrees with E’s parent pointer. The complete
transformation from Part (a) to Part (c) requires modifications to nodes C, D, and E.

and only if Y has X as its parent. An operation to move a node to a new position
in the tree would need to change three objects (the node, the old parent, and the
new parent) in order to preserve the invariant.

2. Under exceptional circumstances an operation may fail, that is, be forced to give
up after doing only part of its invariant-preserving transformation. For example,
some necessary resource may be unavailable, the user may press a Cancel button,
the input may fail a validity check, or a hardware failure may occur. Nonetheless,
the system should be left in a consistent state.

An atomic transaction is an operation that takes a system from an observable initial
state to an observable final state, without any intermediate states being observable or
perturbable by other atomic transactions. If a system starts with a consistent initial
state and modifies that state using only invariant-preserving atomic transactions, the
state will remain consistent. Atomicity must be preserved in the face of both concur-
rency and failures. That is, no transaction may interact with a concurrently running
transaction nor may any transaction see an intermediate state left behind by a failed
transaction. The former requirement is known as isolation. The latter requirement lacks
a generally agreed-upon name; I will call it failure atomicity.

Often, atomic transactions are simply called transactions. In fact, according to
many authors, atomicity is part of the definition of a transaction. Unfortunately, there
are other authors for whom transactions need not be atomic. Because of this lack of
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agreement on the nomenclature, I have introduced this chapter with the full phrase
“atomic transactions” to make my focus clear. Henceforth, I will skip the modifier
“atomic” and use only “transactions,” with the understanding that they are atomic
unless otherwise specified.

Many transaction systems require not only atomicity, but also durability. A transac-
tion is durable if the state of a successfully completed transaction remains intact, even
if the system crashes afterward and has to be rebooted. Each successful transaction
ends with an explicit commit action, which signifies that the consistent final state has
been established and should be made visible to other transactions. With durable trans-
actions, if the system crashes after the commit action, the final transformed state will
be intact after system restart. If the crash occurs before the commit action, the system
will be back in the initial, unchanged state after restart.

Note that failure atomicity is slightly simpler for nondurable transactions. Atom-
icity across system crashes and restarts is easy to arrange: by clearing all memory on
restart, you can guarantee that no partially updated state is visible after the restart—no
updates at all, partial or otherwise, will remain. This clearing of memory will happen
automatically if the computer’s main semiconductor DRAM memory is used, because
that memory is volatile, that is, it does not survive reboots. (Strictly speaking, volatility
means the memory does not survive a loss of power; reboots with the power left on
generally clear volatile memory as well, however.)

Even nondurable transactions must ensure failure atomicity for less dramatic fail-
ures in which the system is not rebooted. For example, a transaction might do some
updates, then discover invalid input and respond by bailing out. To take another exam-
ple, recovering from a detected deadlock might entail aborting one of the deadlocked
transactions. Both situations can be handled using an explicit abort action, which indi-
cates the transaction should be terminated with no visible change made to the state.
Any changes already made must be concealed, by undoing them.

In 1983, Härder and Reuter coined a catchy phrase by saying that whether a system
supports transactions is “the ACID test of the system’s quality.” The ACID acronym
indicates that transactions are atomic, consistent, isolated, and durable. This acronym is
quite popular, but somewhat redundant. As you have seen, a transaction system really
provides only two properties: atomicity and durability. Consistency is a property of
system states—a state is consistent if the invariants hold. Transactions that are written
correctly (so each preserves invariants) will leave the state consistent if they execute
atomically. Isolation simply is another name for atomicity in the face of concurrency:
concurrent transactions must not interact.

The properties of atomicity and durability refer to transactions, independent of
the objects on which the transactions operate. Returning to the earlier rooted tree
example of moving a node to a new position, a transaction might modify the node,
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the old parent, and the new parent, all within one atomic unit. This stands in contrast
to monitors, each of which controls a single object.

To obtain the requisite atomicity with monitors, the whole tree could be a single
monitor object, instead of having one monitor per node. The tree monitor would
have an operation to move one of its nodes. In general, this approach is difficult to
reconcile with modularity. Moreover, lumping lots of data into one monitor creates
a performance problem. Making the whole system (or a large chunk of it) into one
monitor would prevent any concurrency. Yet it ought to be possible to concurrently
move two nodes in different parts of a tree. Atomic transactions allow concurrency of
this sort while still protecting the entire transformation of the system’s state.

This point is worth emphasizing. Although the system’s state remains consistent
as though only one transaction were executed at a time, transactions in fact execute
concurrently, for performance reasons. The transaction system is responsible for main-
taining atomicity in the face of concurrency. That is, it must ensure that trans-
actions don’t interact with one another, even when running concurrently. Often the
system will achieve this isolation by ensuring that no transaction reads from any
data object being modified by another transaction. Enforcing this restriction entails
introducing synchronization that limits, but that does not completely eliminate, the
concurrency.

In Section 5.2, I will sketch several examples of the ways in which transactions are
used by middleware and operating systems to support application programs. There-
after, I present techniques used to make transactions work, divided into three sections.
First, Section 5.3 explains basic techniques for ensuring the atomicity of transactions,
without addressing durability. Second, Section 5.4 explains how the mechanism used
to ensure failure atomicity can be extended to also support durability. Third,
Section 5.5 explains a few additional mechanisms to provide increased concurrency
and coordinate multiple participants cooperating on a single transaction. Finally,
Section 5.6 is devoted to security issues. The chapter concludes with exercises, explo-
ration and programming projects, and notes.

5.2 Example Applications of Transactions
The transaction concept is much more pervasive in middleware than in operating sys-
tems. Therefore, of the three examples presented in the following subsections, the first
two are from middleware systems. Sections 5.2.1 and 5.2.2 explain the two most long-
standing middleware applications, namely database systems and message-queuing
systems. Moving into the operating systems arena, Section 5.2.3 explains the role that
transactions play in journaled file systems, which are the current dominant form of
file system.
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5.2.1 Database Systems
The transaction concept is most strongly rooted in database systems; for decades, every
serious database system has provided transactions as a service to application pro-
grammers. Database systems are an extremely important form of middleware, used
in almost every enterprise information system. Like all middleware, database systems
are built on top of operating system services, rather than raw hardware, while provid-
ing general-purpose services to application software. Some of those services are syn-
chronization services: just as an operating system provides mutexes, a database system
provides transactions.

On the other hand, transaction services are not the central, defining mission of
a database system. Instead, database systems are primarily concerned with providing
persistent data storage and convenient means for accessing the stored data. Nonethe-
less, my goal in this chapter is to show how transactions fit into relational database
systems. I will cover just enough of the SQL language used by such systems to enable
you to try out the example on a real system. In particular, I show the example using
the Oracle database system.

Relational database systems manipulate tables of data. In Chapter 4’s discussion
of deadlock detection, I showed a simple example from the Oracle database system
involving two accounts with account numbers 1 and 2. The scenario (as shown in
Figure 4.23 on page 107) involved transferring money from each account to the other,
by updating the balance of each account. Thus, that example involved a table called
accounts with two columns, account_number and balance. That table can be cre-
ated with the SQL command shown here:

create table accounts (
account_number int primary key,
balance int);

Similarly, you can initialize account 1 to $750 and account 2 to $2250 by using the
following commands:

insert into accounts values (1, 750);
insert into accounts values (2, 2250);

At this point, you can look at the table with the select command:

select * from accounts;

and get the following reply:

ACCOUNT_NUMBER BALANCE
-------------- ----------

1 750
2 2250
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(If you are using a relational database other than Oracle, the format of the table may
be slightly different. Of course, other aspects of the example may differ as well,
particularly the deadlock detection response.)

At this point, to replicate the deadlock detection example from Figure 4.23, you
will need to open up two different sessions connected to the database, each in its own
window. In the first session, you can debit $100 from account 1, and in the second
session, you can debit $250 from account 2. (See page 107 for the specific SQL com-
mands.) Now in session one, try to credit the $100 into account 2; this is blocked,
because the other session has locked account 2. Similarly, session two is blocked try-
ing to credit its $250 into account 1, creating a deadlock, as illustrated in Figure 5.2. As
you saw, Oracle detects the deadlock and chooses to cause session one’s update request
to fail.

Having made it through all this prerequisite setup, you are in a position to see
the role that transactions play in situations such as this. Each of the two sessions is

Try debiting $100 from account 1

Completes, leaving account 1 locked

Try crediting $100 to account 2

Session 1

Blocks, waiting for account 2

Deadlock!

Try debiting $250 from account 2

Completes, leaving account 2 locked

Try crediting $250 to account 1

Session 2

Blocks, waiting for account 1

Figure 5.2 Two transfer transactions deadlock when each waits for exclusive access to the account
for which the other already has obtained exclusive access. In this diagram, the vertical dimension
represents the passage of time.
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processing its own transaction. Recall that session one has already debited $100 from
account 1 but finds itself unable to credit the $100 into account 2. The transaction
cannot make forward progress, but on the other hand, you don’t want it to just stop
dead in its tracks either. Stopping would block the progress of session two’s transaction.
Session one also cannot just bail out without any cleanup: it has already debited $100
from account 1. Debiting the source account without crediting the destination account
would violate atomicity and make customers angry besides.

Therefore, session one needs to abort its transaction, using the rollback com-
mand. Aborting will back out of the transaction’s earlier debiting of $100 from
account 1 and release its lock on that account. As a result, session two’s attempt to
credit $250 into account 1 can finally stop hanging and complete. Continuing my
earlier tradition of showing session one at the left margin and session two indented
four spaces, the interaction would look like:

SQL> rollback;

Rollback complete.

1 row updated.

Of course, whoever was trying to transfer $100 from account 1 to account 2 still
wants to do so. Therefore, after aborting that transaction, you should retry it:

SQL> update accounts set balance = balance - 100
where account_number = 1;

This command will hang, because session two’s transaction now has both accounts
locked. However, that transaction has nothing more it needs to do, so it can commit,
allowing session one to continue with its retry:

SQL> commit;

Commit complete.

1 row updated.

SQL> update accounts set balance = balance + 100
where account_number = 2;

1 row updated.

SQL> commit;

Commit complete.

SQL> select * from accounts;
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ACCOUNT_NUMBER BALANCE
-------------- ----------

1 900
2 2100

Notice that at the end, the two accounts have been updated correctly. For example,
account 1 does not look as though $100 was debited from it twice—the debiting done
in the aborted transaction was wiped away. Figure 5.3 illustrates how the transactions
recover from the deadlock.

In a large system with many accounts, there may be many concurrent transfer
transactions operating on different pairs of accounts. Only rarely will a deadlock situ-
ation such as the preceding example arise. However, it is nice to know that database
systems have a clean way of dealing with them. Any transaction can be aborted, due
to deadlock detection or any other reason, and retried later. Moreover, concurrent
transactions will never create incorrect results due to races; that was why the database
system locked the accounts, causing the temporary hanging (and in one case, the
deadlock) that you observed.

5.2.2 Message-Queuing Systems
Message-queuing systems form another important class of middleware, and like database
systems, they support the transaction concept. Developers of large-scale enterprise
information systems normally use both forms of middleware, although message-
queuing systems are more avoidable than database systems. As with database sys-
tems, the primary mission of message queuing is not the support of transactions.
Instead, message-queuing systems specialize in the provision of communication ser-
vices. As such, I will discuss them further in Chapter 10, as part of a discussion of
the broader family of middleware to which they belong: messaging systems or message-
oriented middleware (MOM).

A straightforward application of messaging consists of a server accessed through
a request queue and a response queue. As shown in Figure 5.4, the server dequeues
a request message from the request queue, carries out the required processing, and
enqueues a response message into the response queue. (Think about an office worker
whose desk has two baskets, labeled “in” and “out,” and who takes paper from one,
processes it, and puts it in the other.)

These three steps (dequeue, process, enqueue) are grouped together as an atomic
transaction. If any of the three steps fail, the request message is left in the input queue,
ready to be retried. No request will be lost, nor will there ever be visible signs of
repeated processing, such as duplicated response messages. (Of course, some causes of
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Deadlock detected-crediting fails

Roll back

Try debiting $100 from account 1

Blocks, waiting for account 1

Completes, leaving account 1 locked

Try crediting $100 to account 2

Completes, leaving account 2 locked

Commit

Session 1

Deadlock!

Blocks, waiting for account 2

Crediting completes, leaving
account 1 locked

Commit

Blocks, waiting for account 1

Session 2

Try crediting $250 to account 1

From
 figure 5.2

Figure 5.3 Transactions recover from their deadlock when one rolls back, releasing the lock it holds.
As in the prior figure, the vertical dimension represents the passage of time.

failure will affect retries as well. For that reason, realistic systems generally keep count
of retries and after a while divert the request message, for example, into a human
troubleshooter’s request queue.)

Message-queuing systems also provide durability, so that even if the system crashes
and restarts, each request will generate exactly one response. In most systems,
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(a)
Request queue Response queue

Server

(b)

Figure 5.4 An analogy: (a) a server dequeues a message from its request queue, processes the
request, and enqueues a message into the response queue; (b) an office worker takes paper from
the In basket, processes the paperwork, and puts it into the Out basket.

Request queue Response queue

Server

Server

Server

Figure 5.5 Several message-driven servers in parallel can dequeue from a common request queue
and enqueue into a common response queue. To allow concurrent operation, messages need not be
provided in strict first-in, first-out order.

applications can opt out of durability in order to reduce disk traffic and thereby obtain
higher performance.

To provide greater concurrency, a system may have several servers dequeuing from
the same request queue, as shown in Figure 5.5. This configuration has an interesting
interaction with atomicity. If the dequeue action is interpreted strictly as taking the
message at the head of the queue, then you have to wait for the first transaction to
commit or abort before you can know which message the second transaction should
dequeue. (If the first transaction aborts, the message it tried to dequeue is still at the
head of the queue and should be taken by the second transaction.) This would prevent
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any concurrency. Therefore, message-queuing systems generally relax queue ordering
a little, allowing the second message to be dequeued even before the fate of the first
message is known. In effect, the first message is provisionally removed from the queue
and so is out of the way of the second message. If the transaction handling the first
message aborts, the first message is returned to the head of the queue, even though
the second message was already dequeued.

More advanced workflow systems may include several processing steps, with each
processing step connected to the next by an intermediate message queue. In these
systems, each processing stage is treated as a separate transaction. If the transaction
commits, that stage’s input is gone from its inbound queue, and its output is in the
outbound queue. Seen as a whole, the workflow may not exhibit atomicity. For
example, failure in a later processing stage will not roll back an earlier stage.

Consider a sale of merchandise as an example workflow, as shown in Figure 5.6.
One transaction might take an incoming order, check it for validity, and generate
three output messages, each into its own outbound queue: an order confirmation
(back to the customer), a billing record (to the accounts receivable system), and a ship-
ping request (to the shipping system). Another transaction, operating in the shipping

Incoming orders

Customer

Billing records

Order
processing

Accounts
receivable

Shipping requests

Shipping
system

Order
confirmations

Figure 5.6 In this simplified workflow for selling merchandise, processing a single order produces
three different responses. The response queues from the order-processing step are request queues
for subsequent steps.
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system, might dequeue the shipping request and fulfill it. If failure is detected in the
shipping transaction, the system can no longer abort the overall workflow; the order
confirmation and billing have already been sent. Instead, the shipping transaction has
no alternative but to drive the overall workflow forward, even if in a somewhat dif-
ferent direction than hoped for. For example, the shipping transaction could queue
messages apologizing to the customer and crediting the purchase price back to the
customer’s account. Figure 5.7 shows the workflow with these extra steps.

Even in a system in which one transaction may bill the customer only to have a
later compensating transaction refund the billed amount, using atomic transactions sim-
plifies application programming. Imagine how complex it would be to reason about a
large workflow if each individual processing stage could fail midway through or could
interact with other concurrently executing stages. By treating each workflow stage
as an atomic transaction, a messaging system considerably reduces the application
designer’s cognitive burden. A diagram, such as Figure 5.7, can provide an accurate

Credits

Apologies

Incoming
orders

Customer

Billing records

Order
processing

Accounts
receivable

Shipping requests

Shipping
system

Order
confirmations

Figure 5.7 In this workflow, a failure in shipping must produce compensating responses, as it
cannot abort the overall workflow. The compensating responses credit the customer’s account for
the previously debited amount and send an apology to the customer indicating that the previously
confirmed order will not be filled after all.
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abstraction of the system’s observable behaviors by showing the system as processing
stages linked by message queues.

Finally, consider how the sales workflow keeps track of available merchandise,
customer account balances, and other information. You should be able to see that
individual processing stages of a workflow will frequently have to use a database sys-
tem. As such, transactions will involve both message queues and databases. Atomicity
needs to cover both; if a transaction aborts, you want the database left unchanged
and the request message left queued. In Section 5.5.2, I will explain how this com-
prehensive atomicity can be achieved by coordinating the systems participating in a
transaction.

5.2.3 Journaled File Systems
The transaction concept has been employed in middleware both longer and more
extensively than in operating systems. However, one application in operating systems
has become quite important. Most contemporary operating systems provide file sys-
tems that employ atomic transactions to at least maintain the structural consistency of
the file system itself, if not the consistency of the data stored in files. These file systems
are known as journaled file systems (or journaling file systems) in reference to their use of
an underlying mechanism known as a journal. I will discuss journals in Sections 5.3.2
and 5.4 under their alternative name, logs. Examples of journaled file systems include
NTFS, used by Microsoft Windows; HFS Plus, used by Mac OS X; and ext3fs, reiserfs,
JFS, and XFS, used by Linux. (The latter two originated in proprietary UNIX systems:
JFS was developed by IBM for AIX, and XFS was developed by SGI for IRIX.) File systems
that are not journaled need to use other techniques, which I describe in Section 8.7,
to maintain the consistency of their data structures.

File systems provide a more primitive form of data storage and access than database
systems. As you will see in Chapter 8, contemporary operating systems generally
treat a file as an arbitrarily large, potentially extensible sequence of bytes, accessed
by way of a textual name. The names are organized hierarchically into nested direc-
tories or folders. Typical operations on files include create, read, write, rename, and
delete.

Underlying this simple abstraction are some largely invisible data structures,
known as metadata, that help locate and organize the data. For example, because each
file can grow in size, the file system must be free to store different parts of a file in
different locations on disk. As such, the file system must store metadata for each file
indicating where on disk each portion of the file is located. Moreover, the file system
must store information concerning what parts of the disk are in use, so that it can
allocate unused space for a file that is growing.
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The existence of this metadata means that even simple file operations can involve
several updates to the information stored on disk. Extending a file, for example, must
update both the information about free space and the information about space allo-
cated to that file. These structures need to be kept consistent; it would be disastrous
if a portion of the disk were both used for storing a file and made available for al-
location to a second file. Thus, the updates should be done as part of an atomic
transaction.

Some atomic transactions may even be visible to the user. Consider the renaming
of a file. A new directory entry needs to be created and an old entry removed. The user
wants these two changes done atomically, without the possibility of the file having
both names, or neither.

Some journaled file systems treat each operation requested by an application pro-
gram as an atomic and durable transaction. On such a system, if a program asks the
system to rename a file, and the rename operation returns with an indication of suc-
cess, the application program can be sure that renaming has taken place. If the sys-
tem crashes immediately afterward and is rebooted, the file will have its new name.
Said another way, the rename operation includes commitment of the transaction. The
application program can tell that the transaction committed and hence is guaranteed
to be durable.

Other journaled file systems achieve higher performance by delaying transaction
commit. At the time the rename operation returns, the transaction may not have com-
mitted yet. Every minute or so, the file system will commit all transactions completed
during that interval. As such, when the system comes back from a crash, the file sys-
tem will be in some consistent state, but maybe not a completely up-to-date one. A
minute’s worth of operations that appeared to complete successfully may have van-
ished. In exchange for this risk, the system has gained the ability to do fewer writes to
disk, which improves performance. Notice that even in this version, transactions are
providing some value. The state found after reboot will be the result of some sequence
of operations (even if possibly a truncated sequence), rather than being a hodgepodge
of partial results from incomplete and unordered operations.

Often, journaled file systems protect only metadata; the application data stored
in files may be left in an inconsistent state after a crash. In particular, some writes
into the files may not have taken effect, and the writes that are lost in this way are
not necessarily the ones performed most recently. Even if a journaled file system does
better than this, the most it will offer is a guarantee that all write operations that
completed before a crash will be reflected in the state after the crash. If a program
wants to do multiple writes in an atomic fashion (so that all writes take place or none
do), the file system will not provide any assistance. In this regard, journaled file systems
are still not as thoroughly transaction oriented as database systems are.
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5.3 Mechanisms to Ensure Atomicity
Having seen how valuable atomic transactions are for middleware and operating sys-
tems, you should be ready to consider how this value is actually provided. In particular,
how is the atomicity of each transaction ensured? Atomicity has two aspects: the isola-
tion of concurrent transactions from one another and the assurance that failed trans-
actions have no visible effect. In Section 5.3.1, you will see how isolation is formalized
as serializability and how a particular locking discipline, two-phase locking, is used to
ensure serializability. In Section 5.3.2, you will see how failure atomicity is assured
through the use of an undo log.

5.3.1 Serializability: Two-Phase Locking
Transactions may execute concurrently with one another, so long as they don’t inter-
act in any way that makes the concurrency apparent. That is, the execution must be
equivalent to a serial execution, in which one transaction runs at a time, committing
or aborting before the next transaction starts. Any execution equivalent to a serial
execution is called a serializable execution. In this section, I will more carefully define
what it means for two executions to be equivalent and hence what it means for an
execution to be serializable. In addition, I will show some simple rules for using read-
ers/writers locks that guarantee serializability. These rules, used in many transaction
systems, are known as two-phase locking.

Equivalence, and hence serializability, can be defined in several somewhat differ-
ent ways. The definitions I give are the simplest I could find and suffice to justify
two-phase locking, which is the mechanism normally used to achieve serializability
in practical systems. However, you should be aware that more general definitions
are needed in order to accommodate more advanced concurrency control mecha-
nisms. The notes at the end of the chapter provide pointers to some of these more
sophisticated alternatives.

Each transaction executes a sequence of actions. I will focus on those actions that
read or write some stored entity (which might be a row in a database table, for example)
and those actions that lock or unlock a readers/writers lock. Assume that each stored
entity has its own lock associated with it. I will use the following notation:

• r j (x) means a read of entity x by transaction Tj ; when I want to show the value
that was read, I use r j (x, v), with v as the value.

• w j (x) means a write of entity x by transaction Tj ; when I want to show the value
being written, I use w j (x, v), with v as the value.

• s j (x) means an acquisition of a shared (that is, reader) lock on entity x by transac-
tion Tj .
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• e j (x) means an acquisition of an exclusive (that is, writer) lock on entity x by
transaction Tj .

• s j (x) means an unlocking of a shared lock on entity x by transaction Tj .

• e j (x) means an unlocking of an exclusive lock on entity x by transaction Tj .

• u j (x) means an upgrade by transaction Tj of its hold on entity x’s lock from shared
status to exclusive status.

Each read returns the most recently written value. Later, in Section 5.5.1, I will revisit
this assumption, considering the possibility that writes might store each successive
value for an entity in a new location so that reads can choose among the old values.

The sequence of actions executed by a transaction is called its history. Because
the transactions execute concurrently, if you were to write all their actions in the
order they happen, the transactions’ histories would be interleaved. This time-ordered
interleaving of all the transactions’ histories is called the system’s history. All locking
actions are shown at the time when the lock is granted, not at the possibly earlier time
when the lock is requested. Assume that the histories include all the relevant actions.
In particular, if a transaction aborts and does some extra writes at that time to undo
the effect of earlier writes (as you will see in Section 5.3.2), those undo writes must be
explicitly listed in the history. Note also that I am implicitly assuming the transactions
have no effects other than on storage; in particular, they don’t do any I/O.

Let’s look at some examples. Suppose that x and y are two variables that are initially
both equal to 5. Suppose that transaction T1 adds 3 to each of the two variables, and
transaction T2 doubles each of the two variables. Each of these transactions preserves
the invariant that x = y.

One serial history would be as follows:

e1(x), r1(x, 5), w1(x, 8), e1(x), e1(y), r1(y, 5), w1(y, 8), e1(y),

e2(x), r2(x, 8), w2(x, 16), e2(x), e2(y), r2(y, 8), w2(y, 16), e2(y)

Before you go any further, make sure you understand this notation; as directed in Exer-
cise 5.2, write out another serial history in which transaction T2 happens before trans-
action T1. (The sequence of steps within each transaction should remain the same.)

In the serial history I showed, x and y both end up with the value 16. When you
wrote out the other serial history for these two transactions, you should have obtained
a different final value for these variables. Although the invariant x = y again holds,
the common numerical value of x and y is not 16 if transaction T2 goes first. This
makes an important point: transaction system designers do not insist on deterministic
execution, in which the scheduling cannot affect the result. Serializability is a weaker
condition.
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Continuing with the scenario in which T1 adds 3 to each variable and T2 doubles
each variable, one serializable—but not serial—history follows:

e1(x), r1(x, 5), w1(x, 8), e1(x), e2(x), r2(x, 8), w2(x, 16), e2(x),

e1(y), r1(y, 5), w1(y, 8), e1(y), e2(y), r2(y, 8), w2(y, 16), e2(y)

To convince others that this history is serializable, you could persuade them that it is
equivalent to the serial history shown previously. Although transaction T2 starts before
transaction T1 is finished, each variable still is updated the same way as in the serial
history.

Because the example transactions unlock x before locking y, they can also be inter-
leaved in a nonserializable fashion:

e1(x), r1(x, 5), w1(x, 8), e1(x), e2(x), r2(x, 8), w2(x, 16), e2(x),

e2(y), r2(y, 5), w2(y, 10), e2(y), e1(y), r1(y, 10), w1(y, 13), e1(y)

Here, the invariant x = y is broken: at the end, x is equal to 16, but y is equal to 13.
Thus, this history is not equivalent to either of the two serial histories.

My primary goal in this section is to show how locks can be used in a disci-
plined fashion that rules out nonserializable histories. (In particular, you will learn
that in the previous example, x should not be unlocked until after y is locked.) First,
though, I need to formalize what it means for two histories to be equivalent, so that the
definition of serializability is rigorous.

I will make two assumptions about locks:

1. Each transaction correctly pairs up lock and unlock operations. That is, no trans-
action ever locks a lock it already holds (except upgrading from shared to exclusive
status), unlocks a lock it doesn’t hold, or leaves a lock locked at the end.

2. The locks function correctly. No transaction will ever be granted a lock in shared
mode while it is held by another transaction in exclusive mode, and no transaction
will ever be granted a lock in exclusive mode while it is held by another transaction
in either mode.

Neither of these assumptions should be controversial.
Two system histories are equivalent if the first history can be turned into the sec-

ond by performing a succession of equivalence-preserving swap steps. An equivalence-
preserving swap reverses the order of two adjacent actions, subject to the following
constraints:

• The two actions must be from different transactions. (Any transaction’s actions
should be kept in their given order.)
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• The two actions must not be any of the following seven conflicting pairs:
1. e j (x), sk(x)

2. e j (x), ek(x)

3. s j (x), ek(x)

4. s j (x), uk(x)

5. w j (x), rk(x)

6. r j (x), wk(x)

7. w j (x), wk(x)

Forbidding swaps of the first four pairs ensures that locks continue properly func-
tioning: Tk may not lock x’s lock until after Tj has unlocked it. The next two con-
flicts ensure the read actions return the correct values: swapping a read and a write
would change which value the read action returns. The final conflict ensures that
x is left storing the correct value.

Figure 5.8 illustrates some of the constraints on equivalence-preserving swaps.
Note that in all the conflicts, the two actions operate on the same stored entity (shown
as x); any two operations on different entities by different transactions can be reversed
without harm. In Exercise 5.3, show that this suffices to prove that the earlier example
of a serializable history is indeed equivalent to the example serial history.

Even if two actions by different transactions involve the same entity, they may
be reversed without harm if they are both reads. Exercise 5.4 includes a serializable

(a)

(b)

(c)

(d)

…, r1(x),   r1(y), …

…, r1(x),   w2(x), …

…, r1(x),   w2(y), …

…, r1(x),   r2(x), …

Figure 5.8 Illegal and legal swaps: (a) illegal to swap steps from one transaction; (b) illegal to swap
two conflicting operations on the same entity; (c) legal to swap operations on different entities by
different transactions; (d) legal to swap nonconflicting operations by different transactions.
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history where reads of an entity need to be reversed in order to arrive at an equivalent
serial history.

I am now ready to state the two-phase locking rules, which suffice to ensure seri-
alizability. For now, concentrate on understanding what the rules say; afterward, I will
show that they suffice. A transaction obeys two-phase locking if:

• For any entity that it operates on, the transaction locks the corresponding lock
exactly once, sometime before it reads or writes the entity the first time, and
unlocks it exactly once, sometime after it reads or writes the entity the last time.

• For any entity the transaction writes into, either the transaction initially obtains
the corresponding lock in exclusive mode, or it upgrades the lock to exclusive
mode sometime before writing.

• The transaction performs all its lock and upgrade actions before performing any
of its unlock actions.

Notice that the two-phase locking rules leave a modest amount of flexibility regard-
ing the use of locks. Consider the example transactions that read and write x and then
read and write y. Any of the following transaction histories for T1 would obey two-
phase locking:

• e1(x), r1(x), w1(x), e1(y), e1(x), r1(y), w1(y), e1(y)

• e1(x), e1(y), r1(x), w1(x), r1(y), w1(y), e1(y), e1(x)

• s1(x), r1(x), u1(x), w1(x), s1(y), r1(y), u1(y), w1(y), e1(x), e1(y)

In Exercise 5.6, you can come up with several additional two-phase possibilities for
this transaction.

If the programmer who writes a transaction explicitly includes the lock and unlock
actions, any of these possibilities would be valid. More commonly, however, the
programmer includes only the reads and writes, without any explicit lock or unlock
actions. An underlying transaction processing system automatically inserts the lock
and unlock actions to make the programming simpler and less error-prone. In this
case, the system is likely to use three very simple rules:

1. Immediately before any read action, acquire the corresponding lock in shared
mode if the transaction doesn’t already hold it.

2. Immediately before any write action, acquire the corresponding lock in exclusive
mode if the transaction doesn’t already hold it. (If the transaction holds the lock
in shared mode, upgrade it.)

3. At the very end of the transaction, unlock all the locks the transaction has locked.



hailperin-163001 book October 18, 2005 10:52

142 ! Chapter 5 Atomic Transactions

You should be able to convince yourself that these rules are a special case of two-phase
locking. By holding all the locks until the end of the transaction, the system need not
predict the transaction’s future read or write actions.

I still need to prove that two-phase locking suffices to ensure serializability. Recall
that a history is serializable if it is equivalent to a serial history. Thus, I need to show
that so long as two-phase locking is followed, you can find a sequence of equivalence-
preserving swaps that will transform the system history into a serial one. Please under-
stand that this transformation of the history into a serial one is just a proof technique
I am using to help understand the system, not something that actually occurs during
the system’s operation. Transaction systems are not in the business of forcing transac-
tions to execute serially; concurrency is good for performance. If anything, the run-
ning transaction system is doing the reverse transformation: the programmer may
have thought in terms of serial transactions, but the system’s execution interleaves
them. I am showing that this interleaving is equivalence-preserving by showing that
you can back out of it.

To simplify the proof, I will use the following vocabulary:

• The portion of the system history starting with Tj ’s first action and continuing up
to, but not including, Tj ’s first unlock action is phase one of Tj .

• The portion of the system history starting with Tj ’s first unlock action and con-
tinuing up through Tj ’s last action is phase two of Tj .

• Any action performed by Tk during Tj ’s phase one (with j != k) is a phase one
impurity of Tj . Similarly, any action performed by Tk during Tj ’s phase two (with
j != k) is a phase two impurity of Tj .

• If a transaction has no impurities of either kind, it is pure. If all transactions are
pure, then the system history is serial.

My game plan for the proof is this. First, I will show how to use equivalence-
preserving swaps to purify any one transaction, say, Tj . Second, I will show that if Tk

is already pure, purifying Tj does not introduce any impurities into Tk. Thus, you can
purify the transactions one at a time, without having to worry about wrecking the
transactions purified earlier.

If Tj is impure, you can purify it by first removing any phase one impurities and
then any phase two impurities. To remove the phase one impurities, you can remove
the leftmost one, and then repeat with the new leftmost one, until all are gone. The
leftmost phase one impurity of Tj must be preceded by an action of Tj . I will show that
those two actions can be reversed by an equivalence-preserving swap. That moves the
leftmost impurity further to the left. If this swapping is done repeatedly, the impurity
will percolate its way further and further to the left until it passes the first operation
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of Tj , at which point it will cease to be an impurity of Tj . Phase two impurities can be
removed similarly, starting with the rightmost one, by percolating them to the right
until they pass the last operation of Tj .

I need to show that the leftmost phase one impurity of Tj can be swapped with its
left-hand neighbor, and that the rightmost phase two impurity can be swapped with
its right-hand neighbor. Recall that to legally swap two actions, they must be from
different transactions, and they must not be one of the seven forbidden conflicting
pairs. In order to be the leftmost impurity of Tj , an action must be performed by some
other transaction, Tk, and have an action from Tj as its left-hand neighbor. (A similar
argument applies for the rightmost impurity and its right-hand neighbor.) Thus, the
actions are definitely from different transactions, and the only remaining concern is
the seven conflicts.

For the leftmost phase one impurity and its left-hand neighbor, you cannot have
any of these conflicts:

1. e j (x), sk(x)

2. e j (x), ek(x)

3. s j (x), ek(x)

4. s j (x), uk(x)

because transaction Tj does not do any unlock actions in phase one. (Recall the defi-
nition of phase one.) Nor can you have any of the other three conflicts:

5. w j (x), rk(x)

6. r j (x), wk(x)

7. w j (x), wk(x)

because the two-phase locking rules ensure that each read or write action is performed
only with the appropriate lock held. There is no way transactions Tj and Tk can both
hold the lock on x, with at least one of them being in exclusive mode. Similar argu-
ments rule out any conflict between the rightmost phase two impurity and its right-
hand neighbor; in Exercise 5.7, you can fill in the details.

You have now seen that equivalence-preserving swap steps suffice to purify Tj by
percolating each of its phase one impurities out to the left and each of its phase two
impurities out to the right. The goal is to serialize an arbitrary system history that
complies with the two-phase locking rules. I would like to pick one of its transactions
that is impure and purify it, then repeat with another and keep going until all the
transactions are pure, that is, until the system history has become serial. For this plan
to work, I need to be sure that purifying one transaction doesn’t wreck the purity of
any already pure transaction.
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Purifying Tj doesn’t touch any actions that don’t lie between Tj ’s first action and
its last action. Thus, the only way purifying Tj could endanger the existing purity of Tk

is if Tk lies at least partly within Tj ’s span. However, because Tk is pure, either all of it
lies within Tj ’s span or none of it does, so you need only consider the case that all of
Tk lies within Tj ’s span. In fact, you should be able to convince yourself of something
stronger: if any action of a pure transaction Tk lies within Tj ’s span, then all of Tk lies
within a single one of Tj ’s phases (either all within phase one, or all within phase two).

If Tk’s actions occupy consecutive positions within phase one, purifying Tj will
percolate all of Tk’s actions to the left and leave them in consecutive positions pre-
ceding the start of Tj . Similarly, if Tk is within phase two, all its actions will move to
the right and wind up as a consecutive block to the right of Tj . Thus, Tk’s purity is
preserved.

You can conclude, then, that any system history obeying the two-phase locking
rules is serializable. Recall that serializable histories are equivalent to serial histories.
In a serial history composed from invariant-preserving transactions, each transaction
moves the system from one consistent state to another. Thus, so long as two-phase
locking is used, the system will behave as though it is moving from consistent state to
consistent state. In particular, this situation can be obtained simply by locking each
entity before operating on it the first time and holding all locks until the end of the
transaction.

Even though serializable histories are equivalent to serial histories, they differ in
one important regard. Unlike a serial history, a serializable history may include concur-
rency between transactions. This allows the system to achieve higher performance but
entails a risk of deadlock that is not present in serial execution. If deadlock occurs, one
of the deadlocked transactions needs to be aborted. This abortion is one way in which
a transaction can fail. Therefore, I will next turn to the question of how atomicity is
preserved in the face of transaction failures.

5.3.2 Failure Atomicity: Undo Logging
Recall that atomic transactions may temporarily put the system in an inconsistent state
so long as they restore consistency before committing. For example, in the middle of
a transfer from one account to another, money can temporarily “disappear” (not be
in any account) so long as the money has “reappeared” in the destination account by
the time the transfer is over. You have already seen one way to protect against harm
from these temporary inconsistencies: by using two-phase locking, you prevent any
concurrent transaction from being affected by the inconsistent state. Now you need to
deal with another possible source of trouble: what if a transaction aborts after making
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some, but not all, of its updates to the state? How can you prevent later transactions
from seeing an inconsistent state?

Transactions fail for many reasons. For example, the transfer transaction might
debit money from the source account, and then before crediting it to the destination
account, discover that the destination account doesn’t exist. Alternatively, the system
might detect a deadlock when trying to lock the destination account. Either way, the
transaction is aborted after having debited the source account. To keep the transaction
atomic (and thus preserve consistency), you need to undo the debit from the source
account. That way, the failed transaction will have left the system’s state unchanged.
That is one of the two legal outcomes of an atomic transaction: all or nothing.

Without support from a transaction processing system, failure atomicity is
extremely difficult to ensure. Programmers write a lot of complex and bug-prone code
in attempts to provide failure atomicity on their own. To see how troublesome it can
be, consider two ways to achieve failure atomicity without a transaction processing
system.

One approach is to try to test for all possible causes of failure before taking any
action. For example, test that the destination account exists, and can be locked, before
debiting from the source account. This can lead to poor modularity. After all, the logi-
cal place to check the destination account is in association with crediting that account.
In addition, the advance checking approach doesn’t cope well with concurrency. What
if a concurrent thread messed with the destination account after it had been checked?

Another approach is to test for each possible failure as it may occur and provide
manual cleanup actions. For example, if a failure occurs while crediting the destination
account, revert the money back into the source account. The problem here is that in a
complicated transaction, many failure handlers are needed, as shown in Figure 5.9. The
handler for the second action needs to undo the first action. The handler for the third
action needs to undo actions two and one. The handler for the fourth action needs to
undo actions three, two, and one. In Exercise 5.10, you can show that failure handlers
must share cleanup code to prevent a quadratic increase in the amount of code for the
transaction. Even if the failure handlers share cleanup code, manual cleanup actions
significantly complicate the structure of the transaction.

By contrast, systems that support transactions (such as database systems) make
failure atomicity completely transparent to the application programmer. If a transac-
tion aborts, the system automatically cleans up the state so that no other transaction
will observe any effects from the aborted transaction. In order to provide this service,
the transaction system normally uses an undo log, as I will now describe.

Conceptually, each transaction has its own undo log, which records the actions
needed to back out of the changes that transaction has made to the system’s state.
Every time the transaction writes a new value into some stored entity, it also adds an
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success failure

Action 1

Action 2

Action 3

Action 4

success

failure

Cleanup 1

failure

Cleanup 2
Cleanup 1success

failure

Cleanup 3
Cleanup 2
Cleanup 1

success

Figure 5.9 Failure atomicity can be ensured by testing for failure at each step in a process and
providing appropriate failure handlers. The failure handler for each action needs to clean up all prior
actions, that is, remove their effects. This approach does not scale as well as the general undo log
used by transaction processing systems.

entry to the undo log, showing how the entity can be restored to its prior state. The
simplest way to do this is to record the old value of the entity.

Suppose x = 5 and transaction T1 asks the transaction processing system to write
an 8 into x. In the prior section, you saw that behind the scenes this action might do
more than just write the 8 into x: it might first acquire an exclusive lock on x. Now,
you learn that the transaction processing system will do even more behind the scenes:
it will also add an entry to T1’s undo log, showing that x needs to be set back to 5 to
undo this step. That entry in the undo log will list x as the entity in question, and 5
as its prior value.

If a transaction aborts, the transaction processing system will read back through
that transaction’s undo log entries, from the most recent to the earliest, and carry out
each of the reversions listed in the log. Be sure you understand why the undo log
entries need to be processed in reverse chronological order. In Exercise 5.11, you can
give an example where this matters.
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T1's latest undo entry
next: •

T1

T2
T2's latest undo entry
next: •
T1's previous undo entry
next: •

...
...

...

Figure 5.10 Rather than having a separate undo log for each transaction, the undo logs can be
combined. In this case, the entries for any one transaction are chained together, as shown here, so
that they can be efficiently processed as though in a separate log.

Notice that undoing write operations involves more writing; to undo the write
of 8 into x, you write 5 back into x. This has an important consequence for two-
phase locking. If a transaction writes an entity, it must hold the corresponding lock
in exclusive mode until the transaction has finished aborting or committing. Shared-
mode locks, for entities that the transaction only reads, can be dropped earlier, subject
to the usual two-phase rules. However, the exclusive-mode locks need to be retained,
because so long as the possibility of aborting exists, the possibility of more writing
exists.

I mentioned that conceptually each transaction has its own undo log. Normal
transaction processing systems actually store all the undo logs in one combined log,
with each entry added at the end. In order to efficiently process the entries from a
single transaction in reverse chronological order, each entry contains a pointer to the
previous entry from the same transaction. Each transaction keeps a pointer to its latest
entry, as shown in Figure 5.10. You’ll see in Section 5.4 that durability requires addi-
tional logging; these extra log entries are also mixed into the same combined log with
all the transactions’ undo entries.

5.4 Transaction Durability: Write-Ahead Logging
Adding durability to transactions raises two new issues—one directly and one
indirectly:

1. The direct issue is durability itself. When a transaction commits, all the data needs
to be stored somewhere persistent and made available again after system restart.
(Persistent storage might be battery-powered RAM or, more commonly, a disk
drive.)
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2. The indirect issue is that failure atomicity now needs more work. When the system
is restarted, it may need to clean up after transactions that were in progress at the
time the system crashed and that had already done some writing to persistent
storage.

The simplest way to ensure durability itself is to store all entities in persistent
storage; all writing by transactions goes directly into that persistent storage. This is not
terribly efficient; consider, for example, the difference in speed between disk drives and
RAM. Therefore, I will explain a more practical alternative later in this section. First,
though, to have a correct (if inefficient) solution, I need to address failure atomicity.

When a transaction aborts, the undo log allows the system to roll back any writes
the transaction did. If a transaction is in progress when the system crashes, the transac-
tion should be aborted at system restart time, so that its partial updating of the system
state is not visible. This abortion upon restart can be done in the usual way, by using
the undo log, if four precautions are taken:

1. The undo log must be stored in persistent storage so that it will be available when
the system is restarted, for use in what is called recovery processing.

2. Whenever a transaction writes a new value for an entity into persistent storage, it
must first write the undo record into the persistent undo log, as shown in
Figure 5.11. I previously did not emphasize the order in which these two writes
occur. Now it really matters, because the system could crash between the first write
and the second. Users cannot risk the possibility that the entity has been written
without the undo record.

5

x was 5

5

x was 5

Undo log:

8

x:

Undo log:

x:

Undo log:

x:

Figure 5.11 In order to allow crash recovery, the undo log entry must be made persistent before
the write to the underlying object.
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3. The undo operation (intended to restore an entity from its new value to its old
value) must be safe to use, even if the entity already has its old value. In other
words, the undo operation must be idempotent. Idempotency is important if the
system crashes after the undo record is written, but before the entity itself is writ-
ten. Recovery processing can still “undo” the write that was never done. In addi-
tion, if the system crashes again in the middle of recovery, you can start it all over
again from the beginning, without harm from repeated undo processing. The form
of undo record that I have shown, which records the entity’s old value, naturally
provides idempotency.

4. The recovery processing must have some way to figure out what transactions were
in progress and hence need aborting. The usual way to do this is to keep all the
undo logs in one combined log, which also includes explicit records any time a
transaction commits or aborts. That way, recovery can read backward through the
log, noting the completed transactions and processing the undo entries that are
from other transactions.

Because persistent storage is generally slower than main memory, real transaction
processing systems use a somewhat more sophisticated approach to reduce the amount
of writing to persistent storage. When an entity is accessed the first time, it is copied
into main memory. All reads and writes happen in main memory, for high perfor-
mance. Every once in a while, the transaction system copies the latest version of the
entity back into persistent storage. The system may also occasionally evict an entity
from main memory, if it doesn’t seem active enough to merit the space allocation. I
will address this topic in Chapter 6, because it isn’t particular to transactions.

Similarly, for performance reasons, log records are initially written into main mem-
ory and only later copied to persistent storage. That way, a large chunk of the log can be
written to persistent storage at one time, which improves the performance of devices
such as disk drives.

Incorporating these performance improvements without changing anything else
would wreck atomicity and durability. When the system crashed, almost any situation
would be possible. Committed transactions might have written their results only to
nonpersistent memory, violating durability. Noncommitted transactions might have
written some values into persistent storage, but not the corresponding undo log entries,
violating atomicity. To protect against these cases, you need to put some additional
machinery in place.

The simplest approach to restoring correct operation is to enforce three new rules:

1. No entity may be written back into persistent storage until the corresponding undo
log entry has been written into persistent storage.
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2. The commit entry in the log must be written to persistent storage before the com-
mit operation is complete.

3. All entities must be written back into persistent storage before the commit entry
is written to the log.

The first rule ensures that all undo entries needed during recovery are available at
recovery time. The second rule prevents the recovery process from aborting a trans-
action that the user saw as committed before the crash. The third rule ensures that
committed transactions are durable.

The first two rules are hard to argue with; taken together, they are called write-ahead
logging (WAL). (Although these WAL rules are typical, some systems do manage to work
with variants of them. The end-of-chapter notes provide pointers to the literature.)
However, the third rule deserves closer scrutiny.

Durability demands that any updated value a transaction provides for an entity
must be stored somewhere in persistent storage before that transaction can commit.
However, the third rule seems to suggest a specific location: the entity must be “written
back” into persistent storage, that is, stored in its usual location from which it was
read. This leads to two questions: is this specific choice of location necessary, and, is
it desirable?

When a transaction commits, all its updates to entities must be stored somewhere
persistent. Moreover, if the updates are not stored in the entities’ usual locations,
they must be somewhere that the recovery process can locate. That way, if the sys-
tem crashes and restarts, the recovery process can bring the entities’ usual locations
up to date, thereby allowing normal operation to resume. Because the recovery proc-
ess does its work by reading the log, the log seems like an obvious alternative place to
store committed transactions’ updates.

This answers the earlier question of necessity. It is not necessary to write a trans-
action’s updates into the main data entities’ persistent storage before the transaction
commits. Instead, the updates can be written to the log as redo log entries. As long as
the redo entries are in the log before the commitment marker, and all of them are
in persistent storage before the commit operation completes, the system will ensure
durability. Just as an undo log entry can be as simple as a record of the data entity’s
old value, a redo log entry can be as simple as a copy of the new value.

I still need to address the question of desirability. Is there any advantage to writing
redo log entries into persistent storage, rather than directly updating the modified
entities’ primary locations? To answer this, you need to understand that many systems
use disk as the only persistent storage and that the slowest part of accessing a disk
drive is the mechanical movements needed to reach a particular place on the disk.
Therefore, writing one large block of data to a single location on disk is much faster
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than writing lots of smaller pieces of data at individual locations. By using redo log
entries, the commit operation has to wait only for a single large write to disk: all the
new portions of the log (undo, redo, and commit) can get forced out in a single disk
operation. Without the redo log, the commit operation would get held up waiting for
lots of individual writes.

At this point, you have seen most of the mechanisms used by real transaction
processing systems, at least in simplified overview form. Perhaps the biggest perfor-
mance issue I have omitted is the speed of recovery after a crash. Using the mecha-
nisms I have described thus far, the recovery process would need to read the entire
log, back to when the transaction processing system started running. This is not prac-
tical for systems that run a long time. Therefore, transaction processing systems all
incorporate some mechanism that puts a limit on how much of the log needs to be
processed.

These mechanisms are generally referred to as checkpointing, because the simplest
(and historically earliest) approach is to create a checkpoint, that is, a point at which
the main persistent storage is brought to a consistent state. No log entries prior to
the checkpoint need to be retained. More sophisticated checkpointing mechanisms
avoid having to bring the system into a consistent state, so that normal processing
can always continue.

5.5 Additional Transaction Mechanisms
In Sections 5.3 and 5.4, you learned about the two primary mechanisms used to sup-
port transactions: two-phase locking and logging. In this section, you will extend your
knowledge into two more advanced areas: how isolation can be reduced in order to
increase concurrency (Section 5.5.1) and how multiple transaction participants can be
coordinated using the two-phase commit protocol (Section 5.5.2).

5.5.1 Increased Transaction Concurrency: Reduced Isolation
Two-phase locking ensures serializability, but at a price in concurrency, and hence,
throughput. Transactions may be forced to wait for locks. How big a problem this is
depends greatly on the workload mix.

Some systems process exclusively short transactions involving only a few entities
(such as the example of a transfer from one account to another). Those systems will
have no problem with two-phase locking, because a transaction will lock only a small
portion of the data, and never for long. Thus, there will be almost no contention.
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Other systems exclusively process long-running, read-only transactions involving
most of the entities in a database. For example, mining historical business data for
strategically useful patterns might exhibit this behavior. Here again, two-phase locking
will be no problem, because any number of read-only transactions can coexist using
the shared mode of the readers/writers locks.

However, a mix of these two workloads—lots of little updates with some big
analysis—could be deadly. The analysis transactions could keep much of the database
locked for a long time, choking off the flow of updates. This is particularly troubling,
given that the updates are likely the mission-critical part of the system. (Imagine an
airline that can analyze its history thoroughly but can’t book any new reservations.)

This problem is sufficiently serious that many businesses use two separate database
systems. One, the operational system, handles the mission-critical short transactions,
which may update the data. Periodically (such as each night), data is transferred from
the operational system to a data warehouse. The warehouse holds historical data, gen-
erally not quite up to the present, but close enough for analysis. Analysts can run
arbitrarily long read-only transactions on the warehouse. They can even directly run
ad hoc queries from an interactive session, something they would never dare do on
the operational system. (Imagine an analyst who types in some queries and then goes
home without typing commit; until the interactive session exceeds a time limit and
aborts, it will continue to hold locks.)

Valuable as this warehousing strategy may be, it avoids only the most obvious
manifestations of a more general problem; it does not provide a complete solution.
No perfect solution exists, but database systems provide one other partial solution:
transaction programmers can choose to sacrifice serializability in order to attain greater
concurrency.

Sacrificing serializability to increase concurrency does not mean the programmers
are sacrificing correctness for performance. Serializability is a great simplification for
a programmer trying to reason carefully enough about a program to ensure its cor-
rectness. However, careful reasoning is possible even for nonserializable execution,
with enough additional mental labor. Because such labor is neither free nor immune
from error, serializable execution ought to be the default, with other alternatives only
considered where performance is demonstrably inadequate.

Recall that under two-phase locking, transactions generally hold all locks until the
transaction commits or aborts. Suppose instead the transaction did this only for exclu-
sive locks (when writing); it would acquire a shared lock before each read operation
and release it immediately after the read. Many database systems (such as Microsoft
SQL Server and IBM DB2) offer this as an option, called read committed. In fact, con-
trary to the SQL standard, read committed is often the default mode for transactions;
programmers need to explicitly request serializability.
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Even acquiring a shared lock ever so briefly has some value: it prevents reading
data written by a transaction that is still in progress, because that transaction will hold
the lock in exclusive mode. However, several strange phenomena are possible with
this relaxed isolation, which would not be possible if serializability were enforced.
The most well-known phenomenon is “nonrepeatable read.” If a transaction reads
an entity, and then later reads the same entity again, it may find that the value has
changed. This can happen if between the two reads another transaction writes the
entity and commits.

Nonrepeatable read is often spoken about as though it were the only problem
arising from relaxed isolation. This is a dangerous misconception: a programmer might
think that in an application that can tolerate nonrepeatable reads (for example, one
that doesn’t read any entity twice), serializability is superfluous. This is not true.

Consider, for example, a system with two variables, x and y. Transaction T1 reads
x’s value and writes it into y. Transaction T2 does the reverse: it copies y into x. Some-
one doing both of these transactions would expect x and y to be equal afterward—
either of the transactions would suffice to achieve that. Yet with short read locks,
doing the two transactions concurrently could result in swapping x and y’s old values,
as shown in Figure 5.12, rather than making the two equal. In Exercise 5.12, you can
come up with a system history exhibiting this phenomenon.

Other database systems, such as Oracle and PostgreSQL, take a more radical
approach to relaxed isolation, known as multiversion concurrency control (MVCC). Each
write action stores the new value for an entity in a different location than the old value.
Thus, a read action need not read the most recent version: it can read an older version.
In particular, a transaction can read all entities (other than those it has written itself)
from the version that was most recently committed when the transaction started. Any
writes done since then by other transactions—whether committed or otherwise—are
completely ignored. No read locks are needed at all. This is known as snapshot isola-
tion. When a transaction using snapshot isolation obtains a write lock and the entity

x: y: 53

T1

T2

Figure 5.12 If transactions release each read lock as soon as they are done reading the corre-
sponding object, the execution may not be serializable. For example, two transactions could swap x
and y’s values, as shown here.
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being written was modified by some other transaction that committed since the writ-
ing transaction started, the write request is aborted with an error condition. The writ-
ing transaction must roll back and restart.

It should be clear that snapshot isolation provides repeatable reads. Therefore,
some people, forgetting that nonrepeatable reads are only one symptom of relaxed
isolation, think that snapshot isolation suffices for serializability. Regrettably, both
Oracle and PostgreSQL foster this belief by calling their snapshot isolation mode “seri-
alizable.” Neither offers true serializability, even as an option. For example, on either
of these systems, one transaction could copy x to y while another was copying y to x,
even at the highest isolation level.

5.5.2 Coordinated Transaction Participants: Two-Phase
Commit

A transaction processing system can be built using the mechanisms I have described
thus far: two-phase locking and a write-ahead log containing undo and redo entries.
However, you need one more mechanism if you want to be able to coordinate multiple
subsystems working together on shared transactions. That mechanism is the two-phase
commit protocol, which I describe in this section. (Two-phase commit and two-phase
locking are unrelated, other than that each happens to contain two phases.)

As an example of coordination, a system might include both a message-queuing
system and a relational database. Each uses the mechanisms I have previously described
in order to provide atomic and durable transactions. However, you would like to
be able to have a single transaction that first dequeues a request message from one
queue, then does some database operations, and finally writes a response message
into another queue. All of this should be atomic and durable, as a unit. For example, if
something goes wrong during database processing, the rollback not only should undo
any database changes, but also should restore the request message to its queue.

Transaction processing systems generally include a module specializing in this
coordination, known as a transaction manager, as well as the various resource managers,
such as message-queuing and database systems. The managers communicate with one
another using the two-phase commit protocol in order to ensure that all participants
agree whether a transaction has aborted or committed. In particular, if the transaction
commits, it must be durable in each resource manager.

Gray pointed out that the essence of two-phase commit is the same as a wedding
ceremony. First, the officiating party asks all the participants whether they really want
to go ahead with the commitment. After each of them says “I do,” the officiating party
announces that the commitment has taken place.
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Figure 5.13 The two-phase commit protocol coordinates transaction participants, as shown here
and enumerated in the accompanying text. This diagram shows only the case in which all resource
managers indicate that it is OK to commit, and so the transaction is committed.

In somewhat greater detail, the steps in the two-phase commitment protocol are
as follows, and as shown in Figure 5.13, for the case of a successful commitment:

1. When a new transaction begins, it registers with the transaction manager.

2. In return, the transaction manager assigns an identifying transaction context.

3. Whenever the transaction uses the services of a resource manager, it presents its
transaction context. (If the resource manager subcontracts to another resource
manger, it passes the transaction context along.)

4. When a resource manager sees a new transaction context for the first time, it reg-
isters with the transaction manager as being involved in that transaction. This is
known as joining the transaction.

5. When the transaction wishes to commit, it contacts the transaction manager.

6. The transaction manager knows all the involved resource managers because of
their earlier join messages. The transaction manager starts phase one by asking
each of those resource managers whether it is prepared to commit.

7. When a resource manager is asked to prepare to commit, it checks whether it has
any reason not to. (For example, a database system might check whether any con-
sistency constraints were violated.) If the resource manager detects a problem, it
replies to the transaction manager that the transaction should be aborted. If there
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is no problem, the resource manager first makes sure the transaction’s updates are
all stored in persistent storage (for example, in redo log records). Then, once this
is complete, the resource manager indicates to the transaction manager that the
transaction can commit, so far as this resource manager is concerned.

8. The transaction manager waits until it has received replies from all the resource
managers. If the replies indicate unanimous agreement to commit, the transaction
manager logs a commitment record and notifies all the resource managers, which
starts phase two.

9. When a resource manager hears that the transaction is in phase two of commit-
ment, it logs its own commit record and drops any exclusive locks it has been
holding for the transaction. Once the transaction is in phase two, there is no pos-
sibility it will abort and need to perform undo actions. Even if the system crashes
and restarts, the transaction manager will see its own commitment log record and
go forward with phase two.

Each resource manager then sends an acknowledgment to the transaction man-
ager, indicating completion of the phase two activity. When all of these acknowl-
edgments are received, the transaction manager logs completion of the commit.
That way, after a crash and restart, it will know not to bother redoing phase two.

On the other hand, if in phase one the transaction manager hears a request to abort
from any resource manager or is forced to recover after a crash and finds no commit-
ment record, then it notifies the resource managers to roll back the transaction, using
their undo logs.

5.6 Security and Transactions
Transaction processing systems are often used for an enterprise’s mission-critical oper-
ations. As such, a great deal of thought has gone into security issues in transaction
processing systems. However, many of the issues that arise in these systems are not
actually particular to the transaction mechanism, per se. Here I will focus on security
implications that stem from using atomic transactions.

One security consequence of atomic transactions is salutary. A system constructed
out of atomic transactions is much easier to reason about than a more general system
would be. You saw in Chapter 4 that crackers can exploit race conditions, which would
otherwise almost never happen, in order to subvert a system’s security design. A similar
trick can be played by forcing a non-atomic operation to fail after doing only some of
its actions. By using atomic transactions, the system’s designer excludes both of these
entire categories of vulnerabilities.
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Furthermore, security is enhanced by using a general-purpose transaction process-
ing infrastructure, rather than trying to achieve atomicity through ad hoc means.
Nothing is more prone to security vulnerabilities than complex code that is rarely used.
You saw that achieving failure atomicity without a general mechanism, such as the
undo log, often involves considerable complex, nonmodular code. (For example, see
Exploration Project 5.7, which has you examine some Linux kernel source code.) And
yet, this messy, bug-prone code is never tested under normal circumstances, because
it comes into play only in the case of a failure. As such, bugs in it could go undetected
for years, until some cracker goes looking for them.

By contrast, a general-purpose infrastructure (such as is included in a reputable
database system) has presumably been well tested, for two reasons. First, its correct
operation is a central concern for its authors, rather than peripheral. Second, the exact
same infrastructure comes into play in all situations; for example, undo logs are pro-
cessed in deadlock recovery, user-initiated aborts, and other failure situations. As such,
testing the mechanism in one common situation provides some assurance of correct
operation in other, less common situations.

You have seen that one security guideline regarding transactions is simple: they
should be used. Are there other, less simple and less positive interactions between
transactions and security? Unfortunately, yes. Transactions are a very powerful abstrac-
tion mechanism; that is, they hide a great deal of complexity behind a simple inter-
face. An application programmer can think in terms of the simple interface and totally
ignore the complex underpinnings—except when those complex underpinnings have
security implications. That is the great danger of any abstraction mechanism, trans-
actions included: it can blind you to what is really going on. Thus, another security
guideline is to go beyond the abstract view of transactions and consider the underlying
mechanisms discussed in this chapter.

One instance in which you need to think about transactions’ underpinnings occurs
when you are reasoning about your system’s vulnerability to denial of service attacks.
Transaction processing systems do a great deal of locking behind the scenes. Generally,
they provide not only deadlock detection, but also timeouts on locks. However, this
doesn’t mean that a subverted transaction couldn’t bring other transactions to their
knees. Do you really want to wait the full timeout period for each lock acquisition?

Worse, the usual way of handling locking problems is to roll back the involved
transactions and then restart them. If the problems are caused by fluky coincidences,
they will almost surely not recur on the second try. However, if your system is being
manipulated by a cracker, might you be put in the position of repeatedly rolling back
and retrying the same transactions? If so, you not only are making no headway, but
also are consuming great quantities of resources, such as processing time and log space.
After how many retries should you give up?
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Even aside from locking and retries, you need to understand your transactions’
consumption of log space and other resources to be able to reason about denial of
service attacks. Could an attacker trick you into filling up your log space on disk?

Another pitfall would be to lose track of exactly what degree of isolation your
transactions enjoy relative to other concurrent computations. For example, suppose
you have a transaction that temporarily stores some confidential information into
a widely readable data entity, but then deletes the information before committing.
(Alternatively, the transaction may store the information and then abort upon discov-
ering the information is confidential.) Does this suffice to protect the information from
disclosure? Maybe, maybe not. If your transaction is running in serializable isolation
(that is, with full two-phase locking), and so are all the concurrent computations, then
the information is protected. However, if you allow an adversary to run transactions
that don’t acquire locks (for example, SQL’s “read uncommitted” isolation level), then
you have not protected the confidential information, no matter how serializable your
own transaction is and how careful it is to clean up all the data before committing.

Similarly, suppose your transactions rely on keeping the database consistent (main-
taining invariant properties) in order to operate correctly. Specifically, if the database
becomes inconsistent, your transactions can be tricked into violating security policy.
Are you safe if all the transactions have been declared to use the “serializable” isolation
level, and adversaries are prevented from introducing additional transactions? Not
necessarily. As I mentioned earlier, if you are using the Oracle or PostgreSQL database
system, the “serializable” isolation level doesn’t actually provide serializability; it pro-
vides only snapshot isolation. If you don’t understand that, and exactly what snapshot
isolation entails, you have no way to reason about the kind of situations into which a
cracker could manipulate your transactions. Perhaps the cracker could arrange for your
transactions to run in a nonserializable fashion that leaves the database inconsistent
in a way that creates a security vulnerability.

Most transaction processing systems are closed environments, where crackers can-
not easily introduce extra transactions or even analyze the existing transactions. This
makes them somewhat resistant to attack. Perhaps as a result, the risks mentioned
here have generally remained theoretical to date. No known exploits take advantage
of programmers’ confusion between snapshot isolation and true serializability, for
example. Nonetheless, it is important to remember that abstraction can be dangerous.
Unless you understand what your system is really doing, you will not understand its
vulnerabilities.

One final pitfall for unwary programmers, with possible security implications, is
that a transaction manager can provide atomicity only for those actions under its
control. For example, throughout this chapter, I have assumed that transactions don’t
do any I/O. Mature, full-featured transaction processing systems also allow controlled
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I/O from transactions. Until a transaction commits, all its output is kept impounded.
Only upon commit is the output actually produced. (Some systems go so far as to use
special I/O hardware that can be tested after a crash to see whether the output was pro-
duced yet.) In contrast to these full-featured systems, many programmers build web-
accessible applications (in particular) with only a transactional database as support.
In these systems, as in this textbook, I/O is not automatically included in the trans-
actional protection. The application programmer needs to take responsibility for not
printing a valuable ticket and then allowing the purchase to be aborted, for example.

Exercises
5.1 In the example of deadlock detection and recovery in a database, each of the two

transactions tried to update two account balances, then commit. Suppose you
add another step to the beginning of each transaction: immediately before the
first update, display the full table, using select. Other than displaying the table,
will this have any impact on how the scenario plays out? Explain what will hap-
pen if the transactions are executed in a system that is enforcing serializability
using two-phase locking. (Note that this cannot be tested using Oracle, because
it uses MVCC, rather than two-phase locking.)

5.2 I introduced serial histories with an example where transaction T1 added 3 to x
and y and then transaction T2 doubled x and y. Write out the other serial history,
in which T2 comes first. Leave the sequence of steps within each transaction the
same as in the text, but change the values appropriately.

5.3 Prove that the example serializable history is equivalent to the example serial
history by showing the result of each equivalence-preserving swap step along
the way from the serializable history to the serial history.

5.4 For each of the following histories, if the history is serializable, give an equivalent
serial history. Rather than listing all the steps in the serial history, you can just
list the transaction numbers (1 and 2; or 1, 2, and 3) in the appropriate order. If
the history is not serializable, say so.
(a) s1(x), r1(x), s1(x), e1(z), w1(z), e1(z), s2(y), r2(y), s2(y),

e2(x), w2(x), e2(x), s1(v), r1(v), s1(v), e1(y), w1(y), e1(y)

(b) s1(v), s2(v), r1(v), s2(x), r2(x), e2(z), w2(z), e2(z), s2(x),

s1(z), e1(x), r1(z), w1(x), r2(v), e2(y), w2(y), e1(x), s1(z),
s1(v), s2(v), e2(y)

(c) s1(x), s1(y), s2(x), s2(z), s3(y), s3(z), r1(x), r2(x), r2(z), r3(z),
r3(y), r1(y), s1(x), s1(y), s2(x), s2(z), s3(y), s3(z)
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(d) e1(x), w1(x), e1(x), e2(x), w2(x), e2(x), e2(z), w2(z), e2(z),
e3(z), w3(z), e3(z), e3(y), w3(y), e3(y), e1(y), w1(y), e1(y)

(e) e1(x), r1(x), s2(y), r2(y), s2(y), w1(x), e1(y), w1(y), e1(y), e1(x),

s3(x), e3(y), r3(x), w3(y), e3(y), s3(x)

5.5 Of the serializable histories in Exercise 5.4, which ones obey the two-phase lock-
ing rules?

5.6 As an example of two-phase locking, page 141 showed three different two-phase
histories for transaction T1, which reads and writes x and then reads and writes
y. Come up with at least five more histories for this transaction that also obey
the two-phase locking rules.

5.7 Explain why the rightmost phase two impurity of Tj cannot conflict with its
right-hand neighbor.

5.8 Explain why a pure transaction, Tk, with any of its actions occurring as an impu-
rity within the span of Tj must lie entirely within Tj ’s phase one or entirely within
Tj ’s phase two.

5.9 Some particular collections of transactions may not need two-phase locking to
ensure serializability. However, this is generally a fragile situation, which can be
disturbed by the addition of another transaction—even one obeying two-phase
locking.
(a) Give two transaction histories, neither of which obeys the two-phase locking

rules, but which nonetheless always produce a serializable system history, no
matter how they are interleaved.

(b) Come up with a third transaction history, this one obeying two-phase lock-
ing, such that when interleaved with the first two, a nonserializable system
history can result.

5.10 I mentioned that providing failure atomicity without an undo log results in
complex code. For example, putting an explicit succession of cleanup actions
into each action’s failure handling code can result in a quadratic increase in
code size. Flesh out the details of this argument by proving that if Figure 5.9
on page 146 were extended to include n actions, it would contain !(n2) cleanup
steps.

5.11 Give an example of a transaction where it matters that undo log entries are pro-
cessed in reverse chronological order.

5.12 Suppose you use relaxed-isolation locking rules, where shared locks are held only
for the duration of the read action and then are released immediately afterward.
(Exclusive locks are still held until the end of the transaction.) Give a system
history of two transactions, each complying with these locking rules, in which
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one copies x’s value to y and the other copies y’s value to x. Starting with x = 3
and y = 5, you should wind up with x = 5 and y = 3.

5.13 Redo Exercise 5.1, but instead of two-phase locking, assume that the isolation
level known as “read committed” is used and is implemented with short read
locks. Then do the exercise a third time, assuming snapshot isolation. Only the
latter can be tested using Oracle. (Oracle’s read committed level doesn’t use short
read locks.) To test snapshot isolation using Oracle, start each transaction with
the following command:

set transaction isolation level serializable;

5.14 Suppose that when a stored value is increased by 1, an undo record is written that
does not include the old value. Instead, the undo record indicates that to undo
the operation, the value should be decreased by 1. Is this idempotent? What
problems might arise for crash recovery?

Programming Project
5.1 Build a simple, inefficient Java class to support transactions that are atomic (under

both concurrency and failure) but not durable, and without deadlock detection.
The class should provide some state on which the transactions can operate; for
example, it might encapsulate an array of integers, with put and get operations
that the transactions can use to modify and access slots within the array. The
transactions need to limit themselves to this state, accessed through these oper-
ations, in order to receive the guarantee of atomic execution.

You can use Java’s Threads as the transactions; your class can find out which
one is currently running using Thread.currentThread(). Your class should
take care of automatically acquiring and releasing readers/writers locks (from Pro-
gramming Project 4.10), in accordance with two-phase locking. You will need to
keep track (perhaps in a Map) of the locks each transaction holds. You will also
need to keep an undo log for each transaction.

One design option would be to provide three methods used to signal the
start of a transaction and its termination by commitment or abortion. Another,
more object-oriented, option would be to encapsulate each transaction using an
interface analogous to Runnable in the Java API, with a run method that carries
out the whole transaction. If that method returns, the transaction commits; on
the other hand, if the method throws an exception, the transaction aborts.

As a client application for your class, you could write a program that has
multiple threads transferring money between bank accounts. The encapsulated
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array of integers could be used to store account balances, with the array indexes
serving as account numbers.

Exploration Projects
5.1 Work through the examples in Chapter 25 (“Transactions”) of the J2EE 1.4

Tutorial.

5.2 On a Linux system that uses an ext3 file system, for which you have permission
to change mount options, experiment with the performance impact of journal-
ing options. In particular, test a write-intensive workload after mounting the
file system with each of the options journal=data, journal=ordered, and
journal=writeback. These control how much protection is provided for file
data (as opposed to metadata). With the first, all file operations are atomic and
durable. With the second, a crash may occasionally leave data updated with-
out the corresponding metadata update. With the third, it is even possible for
metadata to be updated but still be pointing at old data. Write a report carefully
explaining what you did and in which hardware and software system context
you did it, so that someone else could replicate your results.

5.3 Carry out the scenario from Exercise 5.12 using a relational database system. You
should use two interactive sessions, in each of which you have given the com-
mand set transaction isolation level read committed. Be sure to
end your commands in each session with commit before you inspect the
outcome.

5.4 Carry out the same scenario as in the previous project using Oracle or PostgreSQL,
with the transaction isolation level set to serializable.

5.5 Try the same scenario as in the previous project, using Microsoft SQL Server or
IBM DB2, with the transaction isolation level set to serializable. You
should find that x and y are not swapped. What happens instead? Does this
depend on how you interleave the commands in the two sessions?

5.6 Come up with a plausible scenario where using snapshot isolation rather than
serializability results in a security vulnerability. You needn’t show detailed SQL
code, just an English description of what the data would be and what the trans-
actions would do with it. (Some more formality might be helpful, of course.)
Explain what an adversary would need to do in order to exploit the vulnerability.

5.7 The quadratic growth in code size in Exercise 5.10 stems from the assumption
that each action’s failure handler has its own disjoint cleanup code. This results
in lots of repetitions of the same cleanup actions. One way to keep explicit per-
action cleanup code (rather than a general undo log) and yet avoid quadratic
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growth is to share the common cleanup code, so that each cleanup action appears
only once. Failures later in the transaction just execute more of that shared
cleanup code than failures earlier in the transaction do. An example of this
pattern can be found in the procedure copy_process in the Linux kernel source
file kernel/fork.c. Skim this code (you don’t need to understand most of it)
and write a description of what programming language mechanism it uses to
execute the appropriate amount of cleanup code, based on how late the failure
occurs. Can you think of an alternative programming language mechanism that
could serve the same purpose? (This exercise was written when the kernel was at
version 2.6.0-test11; however, the relevant aspects of this procedure seem to be
stable across quite a few versions.)

Notes
My treatment of transactions barely scratches the surface. If you are interested in trans-
actions, you should read at least one book devoted entirely to the topic. The best to
start with is probably by Bernstein and Newcomer [19]. After that, you can get a more
detailed treatment of the underlying principles from Weikum and Vossen [134] or of
the practical details (with lots of code) from Gray and Reuter [60].

The earliest electronic transaction processing systems are poorly documented in
the open literature; apparently companies regarded techniques for achieving atomicity
and durability as proprietary. (Gray has suggested the developers merely prioritized
code over papers.) Only in the mid- to late 1970s did techniques such as I explain begin
showing up in publications; references [50, 107, 85, 59] still make good reading today.
A longer, less polished work by Gray [56] was quite influential; today, it is primarily of
interest to historians, as much of the same material appears in more polished form in
his book with Reuter [60].

Härder and Reuter [63] introduced the acronym ACID. In the terminology I pre-
sented, isolation is subsumed under atomicity. You should be aware that some other
authors instead treat atomicity as meaning only atomicity in the face of failures.
Lampson and Sturgis [85] use unitary to mean atomic with respect to failures; how-
ever, this term does not seem to have caught on.

The specific software versions used for the examples were Oracle Database 9i,
PostgreSQL 7.4, and J2EE 1.4. Documentation is available from http://otn.oracle.com,
http://www.postgresql.org, and http://java.sun.com, respectively.

I showed how workflow systems can be configured with message queues connect-
ing the processing stages. A popular alternative is to connect each processing stage
with a centralized process manager, which coordinates the workflow. For example,
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upon receiving a message from order processing, the manager would send messages
out to accounts receivable, shipping, and the customer. The process manager allows
centralized monitoring and control. Process managers are sold as part of Enterprise
Application Integration (EAI) products such as TIBCO’s BusinessWorks.

I mentioned that my definitions of history, equivalence, and serializability were
chosen for simplicity and would not accommodate more sophisticated concurrency
control methods. If you wish to pursue this, the previously cited book by Weikum and
Vossen [134] provides a good foundation. Classic works on the topic include those by
Bernstein and Goodman [17, 18] and by Stearns and Rosenkrantz [121]. Several works
I will cite with regard to relaxed isolation are also relevant here.

Two-phase locking seems to have first been published by Eswaran et al. [50]. That
same 1976 paper also brought to the fore a difficult aspect of serializability in relational
databases, which I have glossed over. Normally, locking is done at the granularity of
individual rows in database tables. Suppose a transaction is operating on all accounts
with zero balances. On the surface, you might think it locks just those rows of the
accounts table. However, what if a concurrent transaction is doing a withdrawal that
brings another account’s balance down to zero? Or inserting a new account with zero
balance? This introduces the problem known as phantoms; a transaction’s assump-
tions can be invalidated not only by changes to the rows the transaction has read, but
also by the addition of new rows. Eswaran et al.’s proposed solution, predicate locks,
was impractical if taken too literally but provided the foundation for more practical
techniques.

In describing durability and failure atomicity in the face of system crashes, I differ-
entiated volatile storage from persistent storage. Real systems need to consider these
issues in even greater detail. For example, a system failure while overwriting a block on
disk may result in the disk having neither the old nor the new version available. This
necessitates precautions, such as writing two copies of critical blocks. A good starting
point for this topic would be the works cited at the beginning of these notes.

Key papers on snapshot isolation and other relaxations of isolation include those
by Berenson et al. [15]; by Kempster, Stirling, and Thanisch [78]; and by Adya, Liskov,
and O’Neil [1]. Historically, the original treatment of relaxed isolation was by
Gray et al. [58].

I attributed the wedding analogy for two-phase commit to Gray. He seems to have
first introduced it in a conference paper [57] and then reused it in his book with
Reuter [60].


