Lazy Code Motion

Max Hailperin

2009-05-04

Step 1: Preliminaries

This is a simplified variant of the dragon book’s version of Lazy Code Mo-
tion (LCM), Algorithm 9.36, which in turn was based on Knoop, Riithing,
and Steffen’s original algorithm as they presented it in a 1992 conference
paper [1]. The revised version in their 1994 journal article [2] is perhaps
simpler, but sticking close to our course textbook seems desirable.

Compared with the textbook, the additional simplification is that we
will focus on occurrences of a single expression; for example, we might focus
just on reducing the number of times ax*b is computed. Thus, rather than
needing to ask what set of expressions is anticipated in each block (and
similar questions), we can just ask what blocks the expression is anticipated
in.

We also will make explicit an assumption that is sometimes omitted in
the textbook: the entry and exit blocks play no other role. That is, both
are empty, the entry block has no predecessors, and the exit block has no
SUCCEessOors.

We will also retain two other simplifying assumptions from the textbook.
First, each basic block contains at most one statement prior to the code-
motion transformation. Second, whenever a block has multiple predecessors,
each of those predecessors must be an empty block with only a single suc-
cessor. (Step 1 of Algorithm 9.36 ensures this second property by inserting
empty blocks.)

Assume that the expression being optimized is axb and that the name t
is not in use. Our goal, then, is to replace some occurrences of a*xb with t
and insert the statement t = a*b at the start of some blocks. Along the way
to LCM, we will encounter two closely related code-motion transformations,
Busy Code Motion (BCM) and Almost Lazy Code Motion (ALCM), which
make different choices as to where these replacements and insertions should
take place.



If a block contains an occurrence of a*b prior to the optimization, we
say it uses the expression. If the block contains an assignment to either a
or b, we say it kills the expression. Note that any block that both uses the
expression and Kkills it will always use the expression first, before killing it,
because of our assumption that each block contains only one statement.

Step 2: Computing “anticipated in”

To compute the list of blocks where the expression is “anticipated in” (that
is, anticipated at the top of the block), perform the following steps:

1. Write down all the block numbers.
2. Cross off the exit block.
3. Cross off any block that kills the expression and doesn’t also use it.

4. Repeat as long as any changes occur: for any crossed-off block, cross
off any predecessor that doesn’t use the expression.

Step 3: Computing ‘“available in”

Next we compute the list of blocks where the expression is “available in”
(that is, available at the top of the block). However, note that the dragon
book is using a special definition of “available” for LCM that is different
from Section 9.2’s definition. To compute the blocks where the expression
is “available in” using this special definition:

1. Write down all the block numbers.
2. Cross off the entry block.
3. Cross off the successors of blocks that kill the expression.

4. Repeat as long as any changes occur: for any crossed-off block that is
also crossed-off in the “anticipated in” list, cross off each successor.

Step 4: Computing “earliest”

To compute the blocks that are “earliest,” just list those that were crossed
off from the “available in” list but left uncrossed on the “anticipated in” list.



At this point, we have all the information to do BCM. In BCM, all of
the original uses of the expression are replaced by the new temporary, t.
The new computations t = axb are inserted at the top of those blocks that
are earliest. This eliminates redundant computations, but may do some
computations earlier than there is any reason to.

Step 5: Computing “postponable in”

To compute the list of blocks where the expression is “postponable in” (that
is, postponable at the top of the block), perform the following steps:

1. Write down all the block numbers.
2. Cross off the entry block.
3. Cross off the successors of blocks that use the expression.

4. Repeat as long as any changes occur: for any crossed-off block that is
not listed as “earliest,” cross off each successor.

Step 6: Computing “latest”

First, as a preliminary, make a list of “candidate” blocks by listing all those
blocks that show up on either the “earliest” list or the “postponable in” list
(not crossed off).

Second, list the blocks that are “latest” as follows: write down those
block numbers that appear on the “candidate” list and either use the ex-
pression or have a successor that is not a candidate.

At this point, we have all the information to do ALCM. As in BCM, all
of the original uses of the expression are replaced by the new temporary,
t. The new computations t = a*b are inserted at the top of those blocks
that are latest. This eliminates just as much redundant computations as
BCM’s placement, without doing any computations earlier than there is any
reason to. The only remaining defect is that in some cases the expression
may be computed into t when the only use of that value is in the very
next instruction, within the same block. In this case, the computation isn’t
unnecessarily early, but the temporary is unnecessarily employed.



Step 7: Computing “used out”

To compute the list of blocks where the expression is “used out” (that is,
would prove useful at the bottom of the block), perform the following steps:

1. For each block that uses the expression and isn’t latest, add its prede-
cessors to the “used out” list (if they aren’t yet on it).

2. Repeat as long as any changes occur: for any listed block that isn’t
latest, add its predecessors to the list (if they aren’t yet on it).

Step 8: The LCM transformation

The insertions and replacements are essentially the same as those listed
earlier for ALCM. However, for any block in which ALCM would perform
both insertion and replacement, those changes should be suppressed if the
block is not listed as “used out.”

References

[1] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Lazy code motion.
In Proceedings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, pages 224-234, 1992.

[2] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Optimal code mo-
tion: Theory and practice. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1117-1155, July 1994.



