Partial Redundancy Elimination

Max Hailperin

January 23, 2005

If any path through a program’s control flow graph includes two or more
computations of an expression without any intervening assignments to the
variables used in that expression, then we have an opportunity to improve
the program. This general notion subsumes the classical optimizations of
loop invariant motion and global common subexpression elimination. For
example, in the flow graph fragments shown in figures 1 and 2, we can
arrange to only compute b + ¢ once. In addition to these cases, there are
some other circumstances in which an expression is needlessly calculated
more than once along some path. For example, in the fragment shown in
figure 3, the left-hand path calculates b 4 ¢ twice. This is called a partial
redundancy, and can be remedied as shown in that figure.

Interestingly, we can use a single optimization technique to uniformly
handle all three of these cases. This is because all three are forms of partial
redundancy, in that in each case a node computes a value that is already
available along at least one of the paths leading to that node. Therefore, an
algorithm for partial redundancy elimination also serves to move invariants
out of loops, even though the algorithm embodies no notion of loop. A
slight variant on the algorithm can also do strength reduction, but we won’t
consider that yet, in order to keep the presentation simple.

To simplify matters, we’ll focus exclusively on eliminating redundant
computations of the expression b+ c¢. This leads to boolean-valued dataflow
problems to decide questions such as “Can b+ ¢ be safely computed here?”
in place of set-valued problems such as “Which expressions can be safely

Before: i

a:=b+c

Figure 1: Loop invariant motion



Before:

T [€—

QD
1l

o

After:

Before:

WL N

1]
(o

N W

Figure 2: Global common subexpression elimination

a:=b+c

Figure 3: Partial redundancy elimination




Before: ¢ After: ¢

Exit Exit

Figure 4: Too early computation; unused on one path

computed here?” Further, we’ll assume that all nodes in the flow graph
initially contain at most one assignment and that the predecessors of a join
node are empty. These restrictions allows us to place the new computations
uniformly at the top of nodes. None of these simplifications is difficult to
remove once the basic process is understood. One other restriction, however,
can not be removed (in general) without impairing optimization: there must
never be an edge directly from a branch node to a join node. However, any
such edge can easily be eliminated by adding an intermediate empty node.

Down-safe nodes

In general we’ll need to move computations earlier in the flow graph, as
we did in figures 1 and 3. However, we want to be sure not to move a
computation to such an early point that it might wind up unused. For
example, in figure 4, the computation of b+ ¢ has been moved to too early a
point, since if execution proceeds along the right-hand path, the value will
be unused. Even if the expression is used along all paths from a node to
the program exit, we may be in trouble if one of the variables used in the
expression gets re-assigned first. For example, in figure 5, the expression
b+ c is used on all paths from the top node to the exit; yet computing b+ ¢
in the top node might be a waste, because along the right-hand path b is
changed before b + ¢ is used.

To make this notion precise, we will call a node of the flow graph down-
safe if a computation of b+ ¢ at the beginning of that node would definitely
be used before either b or ¢ is changed. (Some other authors instead say
the expression is “anticipatable” or “very busy” at the node.) We can use
a dataflow analysis to determine which nodes are down-safe. In order to do
this, we’ll define two other predicates on nodes, namely Used and Transpar-
ent.

Used is true of a node if b+ ¢ is used in that node; in this case, the node



Before: ¢

b:=d+e

b:=d+e

d:=b+c

¥

Exit

d:=b+c

¥

Exit

Figure 5: Too early computation; killed on one path

is definitely down-safe. A node is transparent provided neither b nor c is
assigned in that node. If a node is transparent, and all its successors are
down-safe, then it is down-safe itself. However, the special exit node of the
program is definitely not down-safe.

Writing these facts in symbols we have for each node n in the flow graph

D-safe(n) =
false if n = exit
Used(n) V (Transp(n) A NseSucen) D-safe(s)) otherwise

Since the flow graph is in general cyclic, this system of equations defines
down-safety only implicitly as a fixed point. In particular, the desired so-
lution is the greatest fixed point, which can be found by iteration starting
from the initial assumption that all nodes except the exit are down-safe.

Up-safe nodes

Although any down-safe node is an acceptable place to evaluate the expres-
sion, some may be preferable to others. In particular, our goal is to reduce
the number of evaluations by carefully choosing among the down-safe nodes.
The next section will address this problem; for now, we tackle a sub-problem,
namely identifying the up-safe nodes.

Just as a node is down-safe for an expression if that expression will def-
initely be used thereafter without being killed first, a node is up-safe for an
expression if that expression definitely has already been used, without being
killed in the meantime. (Many other authors instead say the expression is
“available” at the node.)

It should be clear that it is undesirable to re-compute the expression
at an up-safe node, since along all paths leading to that node, the value



down-safe a=b+c

and earliest

neither ¢

down-safe

nor earliest

down-safe ¢

but not d:=b+c

earliest \
Exit

Figure 6: An example of Farliest

could have be saved the last time it was computed and then at the up-safe
node re-used instead of being re-computed. It is possible to show that the
program transformation described in this handout will in fact never call for
the computation of the expression at an up-safe node. (This is left as an
exercise for the reader.)

We will denote the up-safety predicate by U-safe. It can be found as the
greatest fixed point of

U-safe(n) =
false if n = start
/\pepmd(n)(Tmnsp(p) A (Used(p) V U-safe(p))) otherwise

Earliest down-safe nodes

As noted above, we want to choose among the down-safe nodes those to
compute the expression at, in a way that will minimize the number of com-
putations. It can be shown that the number of evaluations is minimized
by choosing those down-safe nodes that are as early as possible in the flow
graph. Precisely, we want those down-safe nodes that are either the start
node or have an opaque predecessor or have a predecessor that is neither
up-safe nor down-safe:

Earliest(n) = D-safe(n)A
true if n = start
VpePred(n)(Tm"Sp(p) V (U-safe(p) V D-safe(p))) otherwise

If you are unsure why U-safe has to appear on the right of the equation,
consider figure 6, in which the bottom node’s predecessor is up-safe. Thus,
even though that predecessor node isn’t down-safe, the bottom node isn’t
earliest.

We now know how to minimize the number of computations of b + c.
We can insert ¢t « b+ ¢ at the beginning of each node that is earliest and



Ok to delay a:=t
to here

Not ok here

Figure 7: A computation can’t be delayed past where it is used

replace all the original instances of b + ¢ by t. (This presumes that ¢ is a
new name not otherwise in use.)

Latest nodes as good as earliest safe nodes

Unfortunately, the placement choice described above (the earliest safe nodes)
may be overkill. By doing all computations as early as possible, we maximize
the lifetime of the stored values and thus maximize the demand for registers.
This could cause some registers to be spilled to slower memory. Meanwhile,
it is possible that a later placement of the expression might not be executed
any more frequently—all we know is that it wouldn’t be any less frequent.

This leads us to consider how much later the expressions can be placed
without increasing the number of evaluations. One reason why we might
not be able to move a computation any later is because the value is used in
the node in which it is computed. For example, the computation of b + ¢
in figure 7 can be moved from the first node to the second, but not to the
third.

Another circumstance under which a computation shouldn’t be moved
later is illustrated in figure 8; delaying the computation in the top left node
until the join node would cause a redundant computation when the right-
hand path was taken. Formalizing these notions, we’ll find the greatest
solution to

Delay(n) = Earliest(n)V
{ false if n = start

Npe Predin) (Used(p) A Delay(p)) otherwise

Having identified the nodes to which delaying is reasonable, we simply
select the latest of those, i.e. those that either include a use of b + ¢ or that



o

€ ] O |[€—

Ok to delay
to here

But not to
here

€

<

Figure 8: A join can deter delaying

have a successor to which delaying isn’t possible:

Latest(n) = Delay(n) A (Used(n) V \/ Delay(s))

seSucc(n)

These latest nodes are where the computations of ¢ < b + ¢ should be
inserted.

Strength reduction

This same algorithm can also do strength reduction in either of two ways:

1. We can broaden our notion of which nodes are transparent, i.e. weaken
our notion of which assignments kill a value. Suppose that we are
considering computations of the expression ¢ * n. Rather than saying
that an assignment of the form i < 7 + 1 kills this expression, we can
say that it merely “injures” ¢ * n. An injured value can be healed by
addition. In this example, if ¢ holds 7 *n, it can be healed by adding n
to it. Simply introducing these notions into the algorithm for partial
redundancy elimination allows some multiplications to be replaced by
additions; however, it also can cause some paths to contain both an
addition and a multiplication, or to have multiple additions. By doing
some additional analysis, these problems can be overcome.

2. Alternatively, we can treat the placement of full-cost computations
like t < 7 xn and the placement of lower-cost updates like t < ¢t + n
as being special cases of the general problem of cost-optimally placing
members of a family of equivalent computations. (At the point where
we would place t < ¢+ n, it is equivalent to t « i xn.) Then the full-
cost computations and the updates can both be placed using a unified



algorithm for cost-optimal placement. This unified scheme generalizes
the algorithm described earlier by choosing placement points between
the earliest and latest.

Notes

Morel and Renvoise [6] originated the notion of suppressing partial redun-
dancies. This paper also showed that loop invariant motion and global com-
mon sub-expression elimination are special cases of suppression of partial
redundancies.

The particular algorithm described here is a more efficient version due
to Knoop, Riithing, and Steffen [5]. One small difference in the version
presented here is that the published version avoids inserting assignments
that are only used in their own node. Not only would that have cluttered
our presentation, but it also is of questionable utility, since the register
allocation phase of the compiler can completely eliminate the apparent cost
of these unnecessary assignments.

Joshi and Dhamdhere [2] proposed the first method of incorporating
strength reduction into partial redundancy elimination. Knoop, Riithing,
and Steffen [4] showed how to implement this in their version of the algorithm
(actually, in their earlier variant [3]), including the refinements necessary
to combine multiple additions and prevent addition and multiplication from
being done on the same path. Hailperin [1] proposed the alternative method
using cost-optimal placement.

References

[1] Max Hailperin. Cost-optimal code motion. ACM Transactions on Pro-
gramming Languages and Systems, 20(6):1297-1322, November 1998.

[2] S. M. Joshi and D. M. Dhamdhere. A composite hosting-strength re-
duction transformation for global program optimization. International
Journal of Computer Mathematics, 11:21-41, 111-126, 1982.

[3] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Lazy code motion.
In Proceedings of the ACM SIGPLAN 92 Conference on Programming
Language Design and Implementation, pages 224-234, 1992.

[4] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Lazy strength re-
duction. Journal of Programming Languages, 1(1):71-91, 1993.

[5] Jens Knoop, Oliver Riithing, and Bernhard Steffen. Optimal code mo-
tion: Theory and practice. ACM Transactions on Programming Lan-
guages and Systems, 16(4):1117-1155, July 1994.

[6] E. Morel and C. Renvoise. Global optimization by suppression of par-
tial redundancies. Communications of the ACM, 22(2):96-103, February
1979.



