
Minimum Spanning Trees (Notes for MCS-236)

Max Hailperin

Fall 2011

Generic algorithm to find a minimum spanning tree

Given a connected weighted graph, G, of order n, the following algorithm
will find the edges of a minimum spanning tree:

1. Initialize A0 to {}.

2. Repeat for k from 0 to n− 2:

(a) Select a component, C, of the forest that has Ak as its edges but
all of G’s vertices.

(b) Select a minimum-weight edge, e, from those edges of G that
connect C to G− C.

(c) Let Ak+1 = Ak ∪ {e}.

3. Return An−1.

The algorithm can’t get stuck

Each of two steps in this algorithm, steps 2a and 2b, is a command to
select an element from a set. Whenever we include such a command in an
algorithm, we have a responsibility to show that the set in question can’t be
empty. Otherwise, the algorithm would be stuck with nothing to select.

In step 2a, we know that every graph has at least one component. The set
of components can never be empty, and so selecting one is always possible.

In step 2b, we can take advantage of the fact that Ak contains k edges.
As such, no component can have more than k + 1 vertices. Since the loop
control ensures that k is at most n − 2, it follows that C can contain at
most n − 1 vertices, leaving at least one for G − C. Thus, in looking for

1



an edge connecting C with G−C, we are looking for a connection between
two nonempty subgraphs of G. As G is connected, it must have at least one
such edge.

Prim’s and Kruskal’s algorithms

Prim’s and Kruskal’s algorithms for finding minimum spanning trees are
specializations of the generic algorithm. Prim’s algorithm is as follows:

1. Select a vertex, u, from G.

2. Run the generic algorithm, at each iteration of the loop choosing C to
be the component that contains u.

Kruskal’s algorithm consists of running the generic algorithm, each time
through the loop choosing C to be a component that minimizes the weight
of the corresponding minimum-weight edge e.

Correctness theorem for the generic algorithm

For all integers k such that 0 ≤ k ≤ n − 1, Ak is a subset of the edges of
some minimum spanning tree of G.

Note that as a particular consequence of this theorem, An−1 must be the
edge set of a minimum spanning tree. From the theorem, it is a subset of
the edges of some minimum spanning tree. But we know that An−1 has size
n− 1, which is the same as the size of any spanning tree. So An−1 must be
the entire edge set of the minimum spanning tree.

Proof of the correctness theorem

We will prove the theorem by induction on k. For the base case, A0 = {},
which surely is a subset of the edges of any minimum spanning tree of G.
For the inductive step, we can take our induction hypothesis to be that some
minimum spanning tree exists, call it T , such that Ak ⊆ E(T ). We need
to show that Ak+1, which equals Ak ∪ {e}, is a subset of E(T ′), for some
minimum spanning tree T ′ that may in general be different from T . We
consider two cases:

Case 1, e ∈ E(T ) : In this case, we can let T ′ = T .

2



Case 2, e /∈ E(T ) : Consider T +e. Because it has n edges, it must contain
a cycle. In particular, because T is acyclic, T + e must contain a cycle
that includes e. Because e connects C with G − C, the cycle must
include at least one other edge, call it e′, that also connects C with
G−C. Let T ′ = T−e′+e. Because e′ connects C with G−C, we know
that e′ /∈ Ak. Thus Ak ⊆ E(T−e′) and so Ak∪{e} ⊆ E(T−e′+e), that
is, Ak+1 ⊆ E(T ′). All that remains is to show that T ′ is a minimum
spanning tree.

To start with, T ′ is a spanning tree of G, because adding e reconnects
the components of T severed by removing e′. The weight of T ′ can
be calculated as w(T ′) = w(T )− w(e′) + w(e). But e was chosen as a
minimum-weight edge connecting C to G− C, so w(e) ≤ w(e′). Thus
w(T ) − w(e′) + w(e) ≤ w(T ) − w(e′) + w(e′); that is, w(T ′) ≤ w(T ).
Because T is of minimum weight and T ′ is no heavier, T ′ is also a
minimum spanning tree.

3


