Stampidine as a Potent Epigenetic Silencer of Host HIV Dependency Factor Genes in HIV-Infected Cells

Sanjive Qazi1,2,3 and Fatih Uckun2,4*

1Bioinformatics Program, Department of Biology, Gustavus Adolphus College, St. Peter, MN, USA
2Department of Virology and Drug Discovery Program, Parker Hughes Institute, St. Paul, MN 55455, USA
3Developmental Therapeutics Program, Children’s Hospital Los Angeles, Children’s Center for Cancer and Blood Diseases, Los Angeles, CA 90027, USA
4Department of Pediatrics, University of Southern California, Keck Medical Center, Los Angeles, CA 90027, USA

Abstract

Here we report that our lead anti-retroviral (ARV) drug candidate Stampidine [2,3'-didehydro-3'-deoxythymidine-5'-(p-bromophenyl methoxy alaninyl phosphate)] results in methylation of a network of HIV-responsive regulatory genes in T-cells, including several genes for HIV-dependency factors (HDFs). Stampidine epigenetically modulates the host transcriptome in a unique manner, silences expression of a distinct set of genes encoding transcription factors and signal transduction molecules, and prevents HIV infection from distorting and disrupting key cellular transcriptional networks. At nanomolar concentrations that are 4-logs lower than those achieved at its non-toxic dose levels in mice, rats, cats, and dogs, Stampidine switched off genes for several HDFs that are required for HIV replication in T-cells. Notably, Stampidine reversed the effects of HIV exposure on the host transcriptome regardless of NRTI-sensitivity or RT mutations of the HIV isolate used and inhibited the replication of 17 NRTI-resistant HIV-1 strains, including recombinant HIV clones containing common patterns of RT mutations responsible for NRTI resistance, in human peripheral blood mononuclear cells (PBMC) with subnanomolar-nanomolar IC50 values (Mean ± SEM = 12.0 ± 3.2 nM). Unlike available ARV agents that disrupt a specific step in the life-cycle of HIV, Stampidine has the potential to abrogate all steps in the life cycle of HIV.

Introduction

Human Immunodeficiency Virus type 1 (HIV-1) infection remains a global health concern affecting millions of individuals worldwide [1-3]. Combination antiretroviral therapy has become the standard of care for patients with HIV infection [1-3]. Antiretroviral (ARV) treatment regimens employing combinations of drugs from at least two of the three classes of ARV therapy, namely Nucleoside Analogue RT Inhibitors (NRTI), Non-Nucleoside Analogue RT Inhibitors (NNRTI), and protease inhibitors, exhibit a potent and sustained antiviral effect and confer consistent long-term viral suppression in patients with HIV infection [1-3]. However, each of these drugs can select for drug-resistant HIV strains and the emergence of ARV drug resistance limits their clinical benefit [4-7]. Acquired resistance to ARV agents hampers the long-term success of contemporary highly active antiretroviral therapy (HAART) regimens [4-7]. Likewise, pre-exposure prophylaxis (PrEP), an evolving approach to HIV prevention in which ARV agents are used prior to potential HIV exposure in an attempt to reduce the likelihood of HIV infection post exposure in the context of unprotected heterosexual intercourse [8-10], has encountered difficulties in part due to ARV drug resistance [11-13]. Therefore, there is an urgent need for potent anti-HIV agents that are active against ARV drug-resistant HIV strains.

Viruses can only evolve in those host cells that provide the essential microenvironment required for their life cycle [14-18]. Genome-wide small interfering RNA (siRNA)-mediated single gene knockdown studies have shown that HIV exploits several host proteins, also known as HIV-dependency factors (HDFs) during multiple steps of infection, including viral entry, viral integration, and viral transcription [14,15,17,18]. Our work has therefore focused on identifying new agents capable of both preventing and treating HIV infection by leveraging the dependency of HIV on HDFs as well as the viral RT enzyme for infecting and replicating in human cells. Our lead ARV drug candidate Stampidine (5'-[4-bromophenyl methoxylaninylphosphate]-2',3'-didehydro-3'-deoxythymidine) (CAS 217178-62-6), a rationally designed novel aryl phosphate derivative of the NRTI stavudine (STV)/d4T (CAS 3056-17-5) that is being developed as a promising new drug candidate against ARV-resistant HIV [3,19], results in methylation of a network of HIV-responsive regulatory genes, including several genes for HDFs. Stampidine epigenetically modulates the host transcriptome in a unique manner, which prevents HIV infection from distorting and disrupting key cellular transcriptional networks. At nanomolar concentrations that are 4-logs lower than those achieved at its non-toxic dose levels in mice, rats, cats, and dogs, Stampidine switched off genes for HDFs that are required for HIV replication. Notably, Stampidine reversed the effects of HIV exposure on the host transcriptome regardless of NRTI-sensitivity or RT mutations of the HIV isolate used and inhibited the replication of 17 NRTI-resistant HIV-1 strains in human peripheral blood mononuclear cells with subnanomolar-nanomolar IC50 values (Mean ± SEM = 12.0 ± 3.2 nM). Unlike available ARV agents that disrupt a specific step in the life-cycle of HIV, Stampidine has the potential to abrogate all steps in the life cycle of HIV.

Materials and Methods

Anti-retroviral (ARV) potency assays

17 HIV-1 strains were used in Stampidine ARV potency assays, including 11 clinical HIV-1 isolates with NRTI resistance and 6...

In order to evaluate the dynamic changes in expression levels of transcriptional factor genes as well as genes for signal transduction molecules, we used the NetAffx.com web site and searched for oligos that contained the string 'transcription' (1220 gene transcripts) as well as 'receptor signal transduction' (853 gene transcripts) on the Affymetrix U95 chipset. The transcript levels for transcription factor genes were statistically filtered using the following criteria to identify the statistically significant HIV effects: 1. Sum of the absolute values of gene expression levels were compared at 24–h, 48–h and 7–day for HIV- induced changes>30 (556 genes); 2. ANOVA p-value for the virus effect on signal difference values<0.05 (229 genes, False discovery rate = 12.2%, this set of genes was used for the correlation analysis). Significantly affected gene transcripts across the three time points were used in the correlation-cluster analysis to characterize network relationships. Samples were pooled from the HIV-infected no drug control group (treatment with all viral strains at all time points (N = 11) and correlations were performed between all pairs of genes. The correlation coefficient (r) was calculated by comparing the Signal Difference metric in the absence and presence of Stampidine (comparing 1 nM Stampidine at 48 hours (7 samples pooled from 1 sample for BR92019, 2 samples for BR92019, 2 samples for HTLV-IIIB and 3 samples for RT-MDR) versus 24 hours (5 samples pooled from 1 sample for BR92019, 1 sample from each virus strain) of 1 nM Stampidine was compared at 48 hours (7 samples pooled from 1 sample for BR92019, 2 samples for BR92019, 2 samples for HTLV-IIIB and 3 samples for RT-MDR) versus 24 hours (5 samples pooled from 1 sample for BR92019, 1 sample from each virus strain). The susceptibility of HIV-1 strains to Stampidine was tested according to previously described methods [19]. The IC_{50} values were calculated using nonlinear regression modeling of the exponential form of the linearized equation. IC_{50} values were log_{10} transformed to homogenize within group variances and normalize data distributions.

Gene expression profiling

Three HIV-1 strains from NIH AIDS Research and Reference Reagent Program, namely RT-MDR (Catalog No. 252), HTLV-IIIB (Catalog No. 398), and BR92019 (Catalog No. 1778) were used in gene expression profiling experiments. MT-2 T-cells cultured in RPMI 1640 supplemented with 15% fetal bovine serum were infected with one of these 3 HIV-1 strains at a multiplicity of infection (MOI) of 0.01. RNA was extracted from HIV-infected MT-2 cells at 24h, 48h, or 7 days after HIV-infection using previously reported standard procedures [21]. In brief, total RNA was prepared from cells infected with virus using TriPure isolation reagent (Boehringer Mannheim). DNA was removed from this RNA preparation by DNase treatment (RQI RNase-Free DNase, Promega) and phenol chloroform extraction. Further purification of RNA was achieved using an RNeasy column prior to in vitro transcription reaction. Total RNA was quantified using standard spectrophotometric methods. First strand cDNA was synthesized with a T7-(dT)_{24} primer and second strand cDNA was synthesized with E. coli DNA polymerase I and ligase. The cDNA product was in vitro transcribed and labeled with the Enzo BioArray High Yield RNA transcript labeling kit. The in vitro transcription products were purified on an RNeasy spin column prior to fragmentation in buffer containing 40 mM Tris-Acetate (pH 8.1), 100 mM KOAc and 30 mM MgOAC for 35 minutes at 94°C. We measured expression levels of gene transcripts using a U95 GeneChip microarray system from Affymetrix, which interrogates the expression levels of 12,625 genes, using our previously reported procedures [21]. Biotinylated fragmented cDNA was hybridized to an Affymetrix U95 array for 15 h prior to wash and staining, as per manufacturer’s recommendations. Arrays were scanned with a confocal scanner manufactured for Affymetrix by Agilent. All HIV-infected samples were compared to the uninfected control samples (time zero) at each time point using comparisons for pairs of gene chips performed on the same day of experimentation. We compared gene expression levels using a T-test (Unequal variance correction) on log_{10} transformed signal values as reported [22-24]. The Signal Difference metric was obtained as a weighted mean (Tukey’s Biweight) by determining the difference in the Signal of the HIV-infected sample relative to the uninfected control sample. Analysis of variance (ANOVA) models, as implemented in the Genesight Software (Biodiscovery Inc, El Segundo), were used to screen for genes differentially affected by Stampidine treatment in the absence or presence of HIV infection across the 3 time points. This analysis identified 3484 transcripts that were most significantly affected using the signal difference metric (p<0.05; False Discovery Rate = 18%). We also examined the effects of Stampidine alone without HIV infection. MT-2 cells were treated with 0 nM (N = 8) or 1-1000 nM (N = 17) Stampidine for 24 hrs, 48 hrs, or 7 days.

MT-2 cells were treated with 0 nM (N = 8) or 1-1000 nM (N = 17) Stampidine for 24 hrs, 48 hrs, or 7 days. We also examined the effects of Stampidine alone without HIV infection. MT-2 cells were treated with 0 nM (N = 8) or 1-1000 nM (N = 17) Stampidine for 24 hrs, 48 hrs, or 7 days. We also examined the effects of Stampidine alone without HIV infection. MT-2 cells were treated with 0 nM (N = 8) or 1-1000 nM (N = 17) Stampidine for 24 hrs, 48 hrs, or 7 days. We also examined the effects of Stampidine alone without HIV infection. MT-2 cells were treated with 0 nM (N = 8) or 1-1000 nM (N = 17) Stampidine for 24 hrs, 48 hrs, or 7 days.
sample for HTLV-IIIB and 3 samples for RT-MDR). Fold difference and P-values (T-test Unequal variances) for the virus effect in the presence of Stampidine was reported for each transcript that showed significant up regulation in the absence of Stampidine. The differentially expressed genes that were downregulated by Stampidine in HIV-infected cells were cross-referenced to the HDF genes identified in 3 separate siRNA-based genomic screens [14,17,18]. The effects of Stampidine on DNA methylation levels in T-cells was determined using 3 different T-cell lines (LOUCY, CEM, MOLT3). We utilized the Infinium HumanMethylation450 (HM450) BeadChip (Illumina) [25,26] to interrogate methylation levels for more than 485,000 methylation sites at the single nucleotide levels covering 99% of RefSeq genes with an average of 17 CpG sites per gene region distributed across the promoter, 5’UTR, first exon, gene body, and 3’UTR, and 96% of CpG islands, with additional coverage in island shores and the regions flanking them. The data were generated at the USC Epigenome Center. Data points were reported as beta values, which is a ratio of the signal intensity of the methylated probe type (M) over the sum of the methylated and unmethylated probe signal intensities (M+U) and a corresponding detection p-value calculated by comparing the signals from each analytical probe to a panel of negative control probes on the array. Data points with corresponding detection p-value >0.05 were masked as “NA” in the data set. Beta-values exhibited marked heteroscedasticity in the low and high methylation range necessitating the transformation of beta-value, which corresponds to % methylation, to M-value [27] using logistic function Log2 (beta/(1-beta)). M-values exhibited a bimodal distribution that correspond to a positive mode (methylated mode) and a negative mode (unmethylated mode) with statistical properties to allow T-test comparisons of no treatment control versus Stampidine treatment for each cell line. We performed a paired T-test on the difference of M-values between control and Stampidine-treated samples for the 3 cell lines and filtered methylation sites exhibiting and increase in methylation in the presence of Stampidine (>5% increase in beta values) and p-value <0.05 (Paired t-test for 3 cell lines).

Results and Discussion

Broad-spectrum anti-HIV activity of Stampidine against HIV isolates/clones with complex drug resistance profiles

Stampidine exhibited nanomolar-subnanomolar potency against ARV drug-resistant HIV-1 strains (Figure 1). Two-way cluster analysis of the Fold Resistance data retrieved from the Stanford Database for HIV isolates showed two clusters of NRTI compounds according to the NRTI-response profiles of 17 ARV drug-resistant HIV strains, one for a group of two drugs: AZT and 3TC, and a second group of 4 drugs: D4T, DDC, DDI and TDF (Figure 1A). Stampidine exhibited nanomolar potency against each of the 17 HIV-1 strains (IC50 = 0.2–42 nM; Mean ± 12.0 nM; SEM = 3.2 nM) even though there were marked differences in fold resistance values between the 7 NRTIs for the 17 HIV-1 strains (Figure 1B, Table S1). Fourteen out of the 17 strains of HIV demonstrated greater than 30 median fold resistance values for 3TC, 10 strains showed greater than 10 median fold resistance values for AZT. Two strains of HIV-1 (1617-1 and 52534-1) showed median fold resistance values greater than 100 for 3TC and AZT and greater than 10 fold resistance for 6 NRTIs (Table S1). Stampidine maintained potency of 20 and 35 nM for 1617-1 and 52534-1 respectively, both harboring mutations in positions Q252-2, G704-2, and 4755-5 containing common mutations in positions M41, D67, L210 and T215. A cluster of 7 HIV-1 strains (G190-6, G890-1, T156-3, X165-9, Q252-2, G704-2, and 4755-5) containing common mutations in positions M41, D67, L210 and T215 in at least 5 of the HIV-1 strains exhibited IC50 values for Stampidine less than 10 nM. Stampidine was most effective against X267-1 strain (IC50 = 0.2 nM) that exhibited greater median fold resistance values against 5 NRTIs (Table S1).

Stampidine prevents HIV infection from distorting and disrupting key cellular transcriptional networks to enable HIV replication in T-cells

By using U95 GeneChip microarrays from Affymetrix, gene expression profiling of MT-2 T-cells was performed before and at 24 h, 48 h, and 7 days after infection with one of 3 different HIV strains (viz.: 92BR019, HTLV-IIIB, RT-MDR). ANOVA identified HIV-induced changes across the three time-points in expression levels of 229 gene transcripts representing 209 genes annotated for transcription factors. Correlation-Cluster analysis was used to characterize the connectivity between these significantly affected transcript levels (Figure 2, Table S2). Among 26,106 transcription factor gene pairs, 649 showed highly significant HIV-induced correlations (p<0.001, R-squared>0.71; False Discovery Rate = 4.0%) and 190 transcription factor gene transcripts intercorrelated with p<0.001 (Figure 2A). Eleven members in this network of transcription factor genes were downregulated when...
transduction molecules, showed highly significant HIV-induced gene pairs for signal transduction related genes were downregulated when uninfected cells were treated with Stampidine (Table S2B). The correlation coefficient (r) matrix was loaded into Genesight software for analysis using Hierarchical Clustering method (Complete Linkage using Pearson Correlation as the Distance metric) performed on both rows and columns. Figure 2 shows the graphical representation of the clustered correlation matrix and highlights the clear modular organization of the connectivity with 3 large modules that showed positive correlations. The network structure could be deduced from examination of the clustered correlation matrix. Notably, the modular connectivity structure of HIV-responsive genes for transcription factors or signal transduction proteins was abolished in the presence of 1 nM Stampidine (Figure 2A and 2B, middle panels). Stampidine treatment up to 1000 nM did not exhibit modular correlation clustering of the HIV induced genes (Figure 2, lower panels) indicating that the widespread effect of Stampidine in the presence of virus was due to disruption of a few key hubs of the gene interaction network formed by HIV and this disruption was only in the presence of HIV.

Within the modular network of transcription factor genes, members of each module showed a high degree of strong positive correlations with each other (Table S2C). Four genes that were significantly affected by virus treatment at multiple time points were found to be members of three modules (TAF6 and CALR (Module 1), SSA2 (Module 2) and SMARCD2 (Module 3). TAF6 was significantly affected by viral treatment at 24 hours (p=0.039), 48 hrs (p=0.0027) and 7 days (p=0.0092); CALR was significantly affected at 24 hours (p=0.039) and 7 days (0.019); SSA2 (35295_g_at) was significantly affected at 24 hr (p=0.0081) and 48 hours (p=0.004); and, SMARCD2 (34695_at) was affected at 24 hours (p=0.0039) and 7 days (p=0.009). These 4 genes were among the most connected (correlation coefficients with p<0.001) of the 190 inter-correlated genes (24 (26% most connected), 16 (29% most connected), and 12 (12% most connected) significant correlations were observed with SMARCD2, TAF6, CALR and SSA2 respectively). ILF3 was the most connected gene exhibiting 35 significant correlations with other transcription factor transcripts. Members of each module showed a high degree of strong positive correlations with each other. Besides TAF6 and CALR, there were 29 members of Module 1 with 465 connections (390 correlations showed R-squared greater than 0.36 (P<0.05; False Discovery rate = 5%), and 317 of these connections were significantly reduced by Stampidine treatment (P<0.05; False Discovery rate = 5%). Two connections showed r-values of 0.95: NSEPI with ILF3, and HTATSF1 with KLF5. For Module 2 correlations, 9 of 10 connections showed R-squared greater than 0.36 (p<0.05) and 8 of these connections were affected by Stampidine treatment. The strongest correlation occurred between ENPP2 and SURB7 (r=0.91). In Module 3, there was a smaller number of significant correlations (17 out of 45 correlation coefficients were significant with p<0.05); but a high proportion of the significant correlations that were detected in the presence of HIV alone were affected by Stampidine treatment (15 out of 17). SMARC22 had significant connections with all the members of Module 3. E2F4 was most strongly correlated with PDEF (r=0.87). Detailed examination of the inter-module connections revealed three candidate genes as major communication points between modules: SURB7, PFNDS and ENPP2. The strongest negative correlation for change in expression induced by HIV was observed between PFNDS and HTATSF1 (0.92). and the strongest positive correlation was observed with SURB7 and RXRB (0.83). The effect of Stampidine
on the major inter-modal connections is shown in Table S2D and Figure S1. Correlation coefficients were calculated in the presence or absence of Stampidine (significant correlations for HIV in the presence of Stampidine (n = 31) were R-squared >0.32 (r = ± 0.57), p<0.001; R-squared (r = ±0.46) > 0.21, p<0.01; R-squared >0.126 (r = ±0.35), p<0.05). Correlation coefficients for all inter-module connections between Module 1 and Module 2 were significantly reduced in the presence of Stampidine, except for the ILF3-SURF87 connection for which a significant r-value (r = 0.41) was maintained in the presence of Stampidine (p<0.05). Module 1 versus 3 connections, 8 out the 10 negative correlations were significantly affected by Stampidine treatment. The KLFS-PFDN5 connection in HIV-infected samples was reversed from a significantly negative correlation in the absence of Stampidine (r = -0.89, p<0.001) to a significantly positive correlation in the presence of Stampidine (r = 0.44, p<0.05). Likewise, 5 out of 7 connections between Module 2 and 3 were significantly affected by the addition of Stampidine.

Notably, there was a significant over-representation of 18 genes (Fisher’s Exact, 2-tailed, p = 0.020) identified in the Brass siRNA screen of HDF genes critical for HIV replication [14] among the 540 HIV-responsive genes in our study that were upregulated after HIV infection without Stampidine (p<0.05) but silenced in the presence of Stampidine (p>0.2) (Figure 3A and 3B). Three (MAP4, JAK1, TNPO3) of these 18 genes were also identified as HDF genes in both the Konig et al. siRNA screen of 293T cells [17] and Zhou et al. siRNA screen of T cells [18] while the remaining 15 were identified as HDF genes in at least one of these independent HIV siRNAi screens. Further, 2 of 18 genes that were cross-referenced with the Brass siRNA screen [14] were down regulated by Stampidine alone within 48 hours (RSL1D1 at 48 hours and COG2 at 24 hours) (Figure 3B). These genes affected by Stampidine alone treatment appeared in two sub-clusters of co-regulated expression sets highlighting 4 genes with the greatest signal difference values (JAK1, TNPO3, CLDN1, RSL1D1) and 3 genes (COG2, MAP4, NMT1) with HIV-induced increases that were only slightly reduced by Stampidine (Figure 3). Hence, in HIV infected cells, Stampidine silences HDF genes previously shown to facilitate multiple steps of HIV infection, including viral entry, viral integration, and viral transcription. Stampidine is the first pharmaceutical ARV drug candidate capable of down-regulating critical genes required for the organization of transcriptional networks enabling HIV replication.

We next sought to determine the effects of Stampidine on the temporal order of dynamic changes in gene expression in MT-2 cells between 24 and 48 hours after exposure to one of 3 different HIV strains. We compared HIV-induced changes relative to control levels of expression at 24 and 48 hours and filtered genes that exhibited increases in HIV-induced expression levels at 48 hours relative to 24 hours. By comparing 48 hour with 24 hour time points and ordering the genes according to the T-test P-value for mean change in signal difference metric, we identified 83 HIV-responsive genes that were significantly upregulated after HIV infection. Notably, Stampidine completely abrogated the HIV-induced increased expression of these 83 genes (Table S3). For 52 genes selected for cluster analysis, the signal difference values were greater than 20 with P-values <0.01. UROS, UPKIA, EIF3E, PAIP2B, MXRA7 and YWHAQ were the most significantly upregulated.

Figure 3: HIV-induced increases at 48 h abrogated by Stampidine showed cross hits with Host Dependent Factors identified in RNAi study. Cross-referencing of HIV-induced increases in expression between 24 and 48 hours that were abrogated by Stampidine with HDF genes validated in the Brass siRNA screen [1] resulted in identification of 18 genes depicted in the heat map. Gene expression values (signal difference metric) were mean centered to HIV-infected 24 hour time point in the presence and absence of Stampidine to assess genes dynamically induced in expression by virus at 48 hours. One-way agglomerative hierarchical clustering technique was used to organize gene expression patterns across treatments to identify genes with similar profiles. Dendrograms depicted in A illustrated similar expression from joining pairs of expression profiles using the average distance metric, whereby profiles joined by short branch lengths showed most similarly. The heat map depicts genes up regulated (red) and down regulated (green) at 48 hours relative to 24 hours. The table in B shows the mean centered increases in gene expression relative to the 24 hour time point in the presence of the virus (N=5) and the abrogation in the presence of virus and Stampidine (N=7). The fold change for the effect of Stampidine alone at 24hr (N=6) and 48 hr (N=6).
affected 6 genes (P<0.01). Cluster analysis (Figure 4) exhibited co-regulation of 5 genes (RPS27, EEF1A1, PABPC1, RPL36A and TPT1) with expression changes greater than 500 using the signal difference metric following infection with HIV and abrogation of the HIV-induced increased expression by Stampidine. A subcluster of 4 genes represented transcripts that were significantly upregulated with HIV infection (P-value < 0.01) but showed no HIV-induced upregulation in the presence of Stampidine (EIF3E, SUMO2, YWHAQ, and SYN1).

Stampidine causes methylation of a subset of HIV-responsive regulatory genes in T-cells

We utilized the Infinium HumanMethylation450 BeadChip (Illumina) to interrogate in 3 different human T-cell lines methylation levels for more than 485,000 methylation sites at the single nucleotide levels covering 99% of RefSeq genes with an average of 17 Cpg sites per gene region distributed across the promoter, 5'UTR, first exon, gene body, and 3'UTR, and 96% of Cpg islands, with additional coverage in island shores and the regions flanking them. 821 probes revealed increased methylation of 568 genes in the presence of Stampidine (Table S4). TFAP4, LEFTY1, and NCOR2, 3 HDE genes identified by Brass siRNA screen as being critical for HIV replication, were methylated by Stampidine. By cross-referencing these genes with the list of HIV-responsive transcription factor genes from gene expression profiling experiments and correlation cluster analysis performed using MT-2 cells, we identified 9 genes (TFCP2, NCO2, RORA, CITED1, GATA2, ZFP36L2, BRF1, IRF7, ESRR) methylated by Stampidine that were components of the network of correlated transcription factors formed in the presence of HIV and silenced in the presence Stampidine (Figure 5).

These 9 genes formed 73 significant correlations with a total of 66 genes (9 methylated genes plus 57 other genes) in the network in which positive correlation coefficient values were reduced in the presence of Stampidine (Table S5). ZFP36L2, NCO2 and RORA were identified as potential hubs as they formed 16, 14 and 14 connections respectively. Regulatory regions of 5 genes (TFCP2, RORA, CITED1, IRF7, ESRR) showed an increase in methylation, 2 genes exhibited methylation close to SNP sites (RORA (rs77221633) and ZFP36L2 (rs8098)). Of the 66 genes, 17 (2 methylated genes plus 15 other highly correlated genes) showed dynamic changes in their expression level between 24-h and 48-h after HIV infection. These dynamic changes were abrogated by Stampidine (Table S6). Notably, a total of 20 genes showing dynamic increases in expression after HIV infection were methylated by Stampidine (Figure 6). Stampidine prevented HIV-induced upregulation of 19 of these 20 genes (Figure 6A, Table S7A). Of these 19 genes, 15 showed methylation of their regulatory regions and/or CPG islands. Regulatory regions of 4 genes (C2B2, EPN2, FLOT1, PNPLA6) showed an increase in methylation and 9 genes exhibited methylation close to SNP sites (Table S7B). Five genes exhibited an increase in expression in the presence of virus between 24 and 48 hours with p-value less than 0.01 (PTPRN2, MYCN, RAEL, APRT and GNAS), and two of these genes showed an increase in methylation at multiple CPG motifs (GNAS (3 sites) and PTPRN2 (4 sites) (TableS7 A and B).

Taken together, these studies establish our lead ARV drug candidate Stampidine as a novel epigenetic modulator of HIV infection-associated gene expression. We propose that Stampidine disrupts critical steps in HIV replication via downregulation of host genes that configure gene networks to enable viral replication. Stampidine is the first dual-function ARV drug candidate with both NRTI activity and epigenetic anti-host transcriptome activity for PrEP as well as for therapy against HIV/AIDS. Unlike available ARV agents that disrupt a specific step in the life-cycle of HIV, Stampidine has the potential to abrogate all steps in the life cycle of HIV.
Stampidine is a promising ARV drug candidate against HIV because of (a) its remarkable subnanomolar to low nanomolar in vitro anti-retroviral potency against genotypically and phenotypically NRTI-resistant primary clinical HIV isolates, non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 isolates, as well as clinical non-B subtype HIV-1 isolates (subtypes A, C, F, and G) originating from South America, Asia, and sub-Saharan Africa with resistance to stavudine, adefovir and tenofovir [28], (b) favorable pharmacokinetics profile in rodents, dogs, and cats with 25 mg/kg or 50 mg/kg tolerable dose levels yielding micromolar plasma concentrations of Stampidine in rodents, cats, and dogs, which are 1,000-fold higher than its in vitro IC₅₀ value against HIV [29,30], (c) favorable, safety profile in rodents, dogs, and cats [29,30], and (d) in vivo anti-retroviral activity in Hu-PBL-SCID mice as well as FIV-infected domestic cats [31]. In a recently completed placebo-controlled Phase I study involving 30 therapy-naïve adult HIV-infected patients, formulated cGMP-grade Stampidine [32] administered as a single oral bolus dose did not cause dose-limiting toxicity at single dose levels ranging from 5 to 25
mg/kg, but it resulted in modest decreases in HIV load in 9 patients [33]. The favorable preclinical and early clinical safety/activity profile of Stampidine warrants its further development as a new anti-HIV drug candidate against ARV drug-resistant HIV strains.

The epigenetic effects of Stampidine are very different from those of azacytidine (Aza-C), another nucleoside analog with marked epigenetic modulatory effects on gene methylation and expression [34]. In contrast to Aza-C, which acts as a demethylating agent that induces gene expression, Stampidine is a methylating agent that represses gene expression. Furthermore, its epigenetic effects are not only in the opposite direction (i.e., methylation by stampidine vs. demethylation by Aza-C), but also much more selective: Stampidine methylates a very small proportion of CpG sites in the genome (821 sites (0.2%)) interrogated on the Infinium HumanMethylation450 BeadChip. By comparison, in a recently published genome-wide analysis examining the methylation levels of more than 27,000 CG dinucleotides representing more than 14,000 genes, Aza-C resulted in strong demethylation (DBs<−0.2) of 16% (1,839 of 11,406) of the CGs methylated in control cells [34]. Cross referencing of the transcription factor genes that were methylated by Stampidine with the transcription factor binding sites that were enriched in 121 genes that became demethylated after Aza-C treatment revealed that only 3 transcription factor binding sites (GATA2, EN1 and HNF1B) were shared. Aza-C demethylated after Aza-C treatment revealed that only 3 transcription factor genes that were methylated by Stampidine methylates a very small proportion of CpG sites in the genome (821 sites (0.2%)) interrogated on the Infinium HumanMethylation450 BeadChip. By comparison, in a recently published genome-wide analysis examining the methylation levels of more than 27,000 CG dinucleotides representing more than 14,000 genes, Aza-C resulted in strong demethylation (DBs<−0.2) of 16% (1,839 of 11,406) of the CGs methylated in control cells [34]. Cross referencing of the transcription factor genes that were methylated by Stampidine with the transcription factor binding sites that were enriched in 121 genes that became demethylated after Aza-C treatment revealed that only 3 transcription factor binding sites (GATA2, EN1 and HNF1B) were shared. Aza-C would demethylate and thereby increase gene expression of the genes harboring binding sites for the 3 transcription factors (very much like HIV exposure), whereas Stampidine would methylate the genes for these transcription factors that would result in the down regulation of genes activated by these transcription factors. Our results show that Stampidine selectively methylates a few transcription factors found at hubs of correlated gene expression changes to cause widespread disruption of HIV induced gene networks.

References

