Rewrite Cycles in CS Courses: Experience Reports

Linda Null
Penn State Harrisburg
Middletown, PA 17057
null@trex.hbg.psu.edu

Liz Adams
James Madison University
Harrisonburg, VA 22807
adamses@jmu.edu

1 Summary

The generally accepted wisdom among teachers of En-
glish composition is that a “rewrite cycle” should be
used as a teaching strategy. Rather than expecting stu-
dents to extrapolate from the grading comments on pa-
per N what they should do differently on paper N + 1,
it has become conventional to ask for a rewrite of paper
N itself. Of course, there are many variations on this
theme. For example, peer review may supplement or
replace some of the rounds of grading.

The panelists will explore some of the ways they have
applied this pedagogic strategy in computer science
courses. Most obviously, when we have our students
write papers, we have them do rewrites. However, some
of us don’t stop there, but rather also apply the same
idea to the writing of programs or mathematical analy-
ses. This encourages our students to do a high-quality
job, and to feel that they have truly mastered a topic.

Clearly, there are tradeoffs and difficulties, principally
involving time. The panelists will also discuss this as-
pect, indicating how they have coped with the pitfalls,
and indicating what has worked well, and what not so
well. Ultimately, however, all the panelists are opti-
mistic about the value of rewrite cycles.

After the panelists share their experiences, there
will be some time for discussion with the audience.
Based on the interest this topic provoked on the
sigcse.members mailing list, and in ensuing private
email, we look forward to an active audience. We
will also make materials from the session available at
http://www.gustavus.edu/~max/rewrite/

2 Linda Null

The Pennsylvania State University recently required all
programs to include a minimum of one writing inten-
sive class in each major. Writing-intensive courses re-
quire multiple writing assignments. Most importantly,
opportunities for students to receive written feedback

Ursula Wolz

The College of New Jersey Gustavus Adolphus College

Ewing, NJ 08628-0718
wolz@tcnj.edu

Mike Ciaraldi
Worcester Polytechnic Institute
Worcester, MA 01609-2280
ciaraldi@wpi.edu

Max Hailperin (Moderator)

St. Peter, MN 56082
max@gustavus.edu

from the instructor and to apply the instructor’s feed-
back to their writing must be built into the course.

As someone with an undergraduate English degree, 1
have been instrumental in modifying some of our com-
puter science courses for this new designation. I will
discuss how we have incorporated the required writing
components into various classes. The challenge lies in
using writing to help students explore and understand
the concepts of the particular course. In addition, these
writing courses should provide students with the neces-
sary writing skills to function in today’s society. Writ-
ing in computer science must be more than simply the
mechanics of grammar and spelling. Style, reasoning
ability, and organization skills must also be addressed.

Writing need not be limited to traditional term pa-
pers; other activities are typically far more interesting.
Possibilities for projects with rewrites include: techni-
cal article summaries, software specification documents,
short evaluations of computer science seminars and col-
loquia, written analyses of student presentations or sim-
ulated student interviews, proposals for funding poten-
tial projects, lab reports, progress reports or work logs,
summaries of previous class presentations, summaries of
class debates, software documentation, case studies for
software projects, and critiques on particular software
packages. With most of these assignments, students are
allowed to evaluate the work of their peers in addition
to revising their own writing after instructor comments.

3 Mike Ciaraldi

I have used an extended version of the rewrite cycle
in a software engineering course. The students revise a
requirements document three times, incorporating feed-
back from both grading and peer review, in the following
sequence:

1. I give out the general outline of a project. Each stu-
dent must submit a requirements document. I grade
these and give them back.



2. Students form groups. Each group turns in one re-
vised requirements document, incorporating the best
ideas from the members and informed by my com-
ments. I grade these and give them back.

3. Each group turns in a revised requirements document
and a specification for a software package meeting
these requirements. I grade these and give them back.

4. Each student gets a blinded copy of another group’s
requirements and spec. The student (acting as client)
comments on it and says whether the developers
should go ahead with the project. I grade these cri-
tiques and give the groups blinded copies of them.

5. The groups produce an updated requirements docu-
ment and spec for the whole project, and a detailed
design of one subsystem. I grade these and pass them
back.

6. The groups implement the subsystem. The last day of
class, each group presents its implementation to the
class. I grade the implementation and presentation.
Next time, I will probably do as I have done in some
other courses, and ask the audience to grade the pre-
sentations too; the group grade would be based partly
on the audience evaluation.

4 Liz Adams

Rewrite cycles are a valuable teaching technique even
when the students are writing in a programming lan-
guage, rather than in English.

T've used it in two different ways, most recently in my
second semester Java course where the students wrote
a program to play Caribbean Stud Poker against the
dealer. Each student was asked to place the class files
for his/her “draft program” on a disk. I collected the
disks and placed them in the disk drives of other stu-
dents. The students did not know whose disk they re-
ceived. They were asked to run the programs and to
make written suggestions for how the program could be
improved. The suggestions and the disks were returned
to the program authors who then had the opportunity
to make corrections before submitting the program to
me for a grade. After I graded the programs, students
were again given the opportunity to correct the defects
I identified during the grading process. Thus the full
process was write, be peer reviewed, rewrite, be graded,
rewrite again, and be graded again. In addition, since
I had two separate sections working on the program, I
also ran initial drafts from the other section in class and
projected them for class discussion.

The other way I incorporated a rewrite cycle (in a data
structures class) was to have students take the program
they’d gotten the lowest grade on during the semester
and rewrite it and submit it as the final program.

5 Ursula Wolz

The analogy between teaching programming and teach-
ing English composition can be extended beyond just
rewriting. Good writing is a six phase cycle (where you
can loop through the middle four steps indefinitely).
Adapted to programming, this cycle becomes:

Free write: Given a problem spec, use a design strat-
egy to flesh it out. Write words, not code. Talk about
the design with collaborators.

Rewrite: After the ideas are on paper, begin to or-
ganize them into objects. Minimize writing of code.
Use diagrams for interrelationships.

Edit: Read through the design looking for inconsisten-
cies, flaws, or blatant misunderstandings. Find an
editor (e.g. a collaborator) to read through it.

Polish: Write code, modifying for clarity. Reorganize
objects if necessary.

Critique: Run it. Make notes on what works, what
doesn’t, what could be improved. Go back to the
rewrite stage.

Finish: The previous phases naturally generate docu-
mentation. Go back and make sure that the docu-
mentation does indeed reflect the code.

Grading is problematic with this approach, because the
stages are a process intended to proactively develop
habits. Only toward the end of the semester do students
really rewrite well. Furthermore, evaluating the stages
would be an overwhelming grading task. But without
accountability, students will ignore the stages. To keep
them accountable, I refuse to help with problems unless
I see evidence of English (natural language) notes. In
our lab environment where they do much of their work
under my supervision, such informal assessment goes far
to encourage them to developing a writing cycle.

6 Max Hailperin

I will describe several semesters of experiences with
“mastery homework,” in which each homework prob-
lem is graded on a binary scale (mastered vs. not-yet-
mastered) and can be handed in as many times as it
takes to reach mastery, any time over a broad period
(sometimes even the full semester). The homework por-
tion of the course grade is simply the percentage of prob-
lems eventually mastered. I generally turn each problem
submission around in less than a day. Grades of “not-
yet mastered” are invitations to come talk. I've used
this not only for problems that call for writing prose
or code, but also on problems where the primary work
product is setting up some equations and deriving a nu-
merical answer. A colleague has also used it for proofs.



