Operating Systems and Middleware: Supporting Controlled Interaction
by Max Hailperin

The commercially published version of this work (ISBN 0-534-42369-8) was Copyright © 2007 by Thomson Course
Technology, a division of Thomson Learning, Inc., pursuant to an assignment of rights from the author.

This free re-release is Copyright © 2005-2010 by Max Hailperin, pursuant to an assignment of the rights back to him by
Course Technology, a division of Cengage Learning, Inc., successor-in-interest to the publisher. Rights to illustrations
rendered by the publisher were also assigned by Course Technology to Max Hailperin and those illustrations are included in
the license he grants for this free re-release.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

The free re-release was prepared from final page proofs and should be completely identical to the commercially published
version. In particular, all the errata listed on the web site still apply. (The author intends to release subsequent versions that
incorporate the corrections as well as updates and improvements. Subsequent versions may also be in a more easily
modifiable form to encourage participation by other contributors. Please email suggestions to max@gustavus.edu.)

Credits from the commercially published version:
Senior Product Manager: Alyssa Pratt
Managing Editor: Mary Franz
Development Editor: Jill Batistick
Senior Marketing Manager: Karen Seitz
Associate Product Manager: Jennifer Smith
Editorial Assistant: Allison Murphy
Senior Manufacturing Coordinator: Justin Palmeiro
Cover Designer: Deborah VanRooyen
Compositor: Interactive Composition Corporation



hailperin-163001 book October 10, 2005 15:34

APPENDIX

Stacks

Most compilers for higher-level programming languages produce machine-language
object code that makes crucial use of a stack stored in the computer’s memory. This
stack is used to allocate space whenever a procedure is called and then deallocate the
space when the procedure returns. That is, the space is associated with a particular
activation of a procedure, and as such, is called an activation record. For this reason,
the stack is called an activation record stack. Another name for the same stack is the
runtime stack, because it plays a central role in the runtime environment, which is to
say, the supporting structures the compiler expects to be present at the time the object
code is run. Even programs written in assembly language generally make use of an acti-
vation record stack, because assembly programmers normally write their procedures
following the same conventions as are used by compilers.

You may have studied activation record stacks in a course on programming lan-
guages, compilers, or computer organization; you may even have learned something
about them in an introductory computer science course. If you have not previously
studied this topic, this appendix should suffice. For the purposes of understanding
operating systems, you do not need to know all the details of how activation records
are used. However, you do need some understanding of how the stack space is allo-
cated in order to understand Chapter 2's explanation of thread switching and also as

4 428 »



hailperin-163001

book October 10, 2005 15:34

A.1 Stack-Allocated Storage: The Concept <« 429

background for one of the security issues discussed in Chapter 11. Therefore, in Sec-
tion A.1, I provide an overview of what stack-allocated storage is, and in Section A.2,
I explain how this storage is represented using memory and a register. Then, in Sec-
tion A.3, I sketch how this is used to support procedure activations.

A.1 Stack-Allocated Storage: The Concept

Like most authors writing about computer systems, I use the word stack to refer to
stack-allocated storage, which is a generalization of the simpler variety of stack used
in the mathematical study of algorithms. I will first describe the simpler kind of stack,
and then I will explain how stack-allocated storage goes beyond it.

The simple kind of stack is a modifiable object supporting two operations: push
and pop. Each of these operations modifies the stack’s state, which can be thought
of as a sequence of values arranged in chronological order according to when they
were added to the stack. When a new stack is created, it does not hold any values.
The push operation adds one new value as the most recent one. The pop operation
removes the most recent value and returns it. Because the pop operation changes the
stack’s state, the next pop will generally produce a different result. You can think of pop
as returning the most recently pushed value that has not yet been popped. This value
is said to be at the top of the stack. Note that it is illegal to pop from an empty stack.

As an example of how this simple kind of stack operates, suppose a new stack is
created, and then the values 3 and 1 are pushed on it, in that order. If a pop operation
is done, the top element, 1, is returned. After this pop operation, the 1 is no longer
on the stack, and so a second pop would return the 3 that is now on top. A third pop
would be illegal, because the first two pops leave the stack empty.

Stack-allocated storage provides a collection of memory locations that can be indi-
vidually loaded from or stored into, much like the elements of an array. However, the
collection of locations can expand and contract in a stack-like fashion.

I can now explain the operations available on a stack, in the sense of a stack-
allocated storage structure. Each newly created stack starts with a size of zero. That is,
while the underlying representation may already be occupying memory space, there
are no memory locations valid for loading and storing. The stack at this point is much
like a zero-length array.

The size of the stack can be expanded using an allocate operation, which takes
a parameter specifying how many new memory locations should be made available.
The newly allocated memory locations are guaranteed to be located at consecutive



hailperin-163001 book October 10, 2005 15:34

430 P Appendix A Stacks

addresses, and the allocate operation returns the smallest of these addresses. Thus,
each location within the allocated block of storage can be loaded or stored using an
address calculated as some offset from the base address returned by the allocation.

The size of the stack can be decreased using a deallocate operation, again with a
parameter specifying the number of locations to be removed. Because the storage is
managed in a stack-like fashion, a deallocate operation frees up the most recently allo-
cated storage locations that have not already been deallocated. Once storage locations
are deallocated, it is illegal to use their addresses for loading or storing.

Normally the size of each deallocation request matches the size of a correspond-
ing allocation request. For example, one might allocate 16 locations, allocate 48 more,
deallocate the top 48, and finally deallocate the remaining 16. A single deallocation
request can also combine the sizes from several allocations. For instance, all 64 loca-
tions in the preceding example could be deallocated at once. The only complicated
kind of deallocation request is one that frees up some, but not all, of a block of memory
locations that were allocated together. In that case, the stack implementation needs
to specify which locations in the partially deallocated block remain valid. I will not
pursue this issue further, as it isn’t relevant to the matters at hand. Instead, I will turn
to the realities of how stacks are represented within computer hardware.

A.2 Representing a Stack in Memory

The standard representation of a stack is a large region of consecutive memory loca-
tions together with a stack pointer register that indicates how many of the locations are
in use. The size of the region is chosen to be large enough that the stack normally will
not overflow it. The virtual memory system (described in Chapter 6) can enforce this
limit and can also expand the size of the region if necessary, provided the adjoining
addresses are not in use for another purpose.

The allocated locations within the stack are all at one end of the region of memory.
One possibility is that the allocated locations occupy the lowest addresses in the region
and that each allocation request expands the stack upward into the higher addresses.
The other possibility is that the allocated locations occupy the highest addresses in the
region and that allocation requests expand the stack downward into lower addresses.
The latter arrangement is the more common in practice, and so I will assume it for the
remainder of my explanation.

The stack pointer register indicates how much of the memory region is in use. It
does this not by containing a count of how many locations are currently allocated,
but by holding the address of the most recently allocated location. This location is



hailperin-163001

book October 10, 2005 15:34

A.3 Using a Stack for Procedure Activations <« 431

16-location
block

48-location
block

Stack pointer —>

| )
i |
' Free space !

Figure A.1 A stack grows downward, occupying the highest addresses in the region used to store
it. The stack pointer points at the “top” of the stack, that is, the most recently allocated block of space.
In this example, blocks of size 16 and 48 were allocated, so the stack pointer points at the 64th location
from the end of the memory region.

conceptually the “top” of the stack, though because the stack grows downward, the
word “top” is misleading. The stack pointer contains the numerically smallest memory
address of any currently allocated location. Figure A.1 shows a stack after allocating
16 locations and then 48; the stack pointer contains the 64th largest memory address
in the region.

Given this representation, an allocate operation decreases the stack pointer by the
number of locations requested and returns the new stack pointer value as the base
address of the allocated block. A deallocate operation increases the stack pointer by
the number of locations to be freed. For example, deallocating 48 locations in Fig-
ure A.1 would leave the stack pointer pointing at the lowest-numbered address of the
16 locations in the remaining block of storage.

At this point, you should understand the basic management of stack space, but
not the purpose to which that space is put. Therefore, I will provide a brief synopsis
of how programming-language implementations make use of stack space.

A.3 Using a Stack for Procedure Activations

When one procedure calls another, the caller executes an instruction that jumps to the
beginning of the called procedure. That instruction also stores a return address, which
is the address of the calling procedure’s next instruction after the procedure call. That



hailperin-163001 book October 10, 2005 15:34

432 p» Appendix A Stacks

way, when the called procedure is ready to return, it can jump to the return address
and thereby resume execution of the calling procedure.

Computer architectures differ in where they store the return address. One approach
is for the procedure call instruction to push the return address on the stack. This
approach is used in the popular 1A-32 architecture, which is also known as the x86
architecture, and is implemented by processors such as those in the Pentium family.
Thus, the very first element of a procedure activation record may be the return address,
pushed by the procedure call instruction itself.

In other architectures, such as MIPS, the procedure call instruction places the
return address in a register. If the called procedure does not execute any further pro-
cedure calls before it returns, the return address can remain in the register. The return
instruction jumps to the address stored in the register. In this case, when there are no
further procedure calls, the procedure activation is termed a leaf.

However, this register-based approach to return addresses does not directly support
nesting of procedure activations, with the called procedure in turn calling a third pro-
cedure, which may call a fourth, and so on. To support that nesting, a whole chain of
return addresses is needed; the innermost procedure activation must be able to return
to its caller, which in turn must be able to return to its caller, and so forth. One register
cannot hold all these return addresses simultaneously. Therefore, any nonleaf proce-
dure activation must store the return address register’s value into the activation record
and later retrieve it from there. As a result, the activation records hold return addresses,
even on architectures that don’t directly push the return address onto the stack in the
first place.

Each procedure activation also needs some storage space for local variables and
other values that arise in the course of the procedure’s computation. Some of this
storage may be in registers rather than in memory. When one procedure calls another,
there must be some agreement regarding how they will share the registers. Typically
the agreement specifies that the called procedure must leave some registers the way it
found them, that is, containing the same values at procedure return as at procedure
entry. The calling procedure can leave its values in these registers when it executes
the procedure call. Other registers can be freely modified by the called procedure; the
calling procedure must not leave any important values in them.

Either kind of register is likely to be saved into the stack. If the called procedure
promises to leave a register as it found it, but wants to use that register for its own
storage, it will reconcile this conflict by saving the register to the stack before modity-
ing it and then restoring the saved value before returning. Thus, the caller will never
know that the register was temporarily modified. This approach is known as callee
saves, because the callee saves the register into its activation record.



hailperin-163001

book October 10, 2005 15:34

A.3 Using a Stack for Procedure Activations <« 433

For registers that the callee may overwrite without compunction, the situation is
somewhat different. For these registers, it is the caller that may want to save them into
its own activation record. The caller saves the registers before the procedure call and
restores them upon resumption. Therefore, this approach is known as caller saves.

Each architecture has some convention for which registers are preserved using the
caller-saves approach and which are preserved using the callee-saves approach. That
way, any two procedures will correctly interoperate. The details don’t matter for the
purposes of this book; what matters is that activation records hold saved registers. As
such, the stack is also a natural place for saving registers upon thread switching, as
described in Chapter 2.

Some values local to a procedure activation cannot be stored in registers. For exam-
ple, suppose that a procedure makes use of a local array, which is allocated when
the procedure is entered and deallocated when the procedure returns. This array will
be stored in memory so that the array elements can be accessed with load and store
instructions. Because the lifetime of the array corresponds with a procedure activation,
the array will be part of the activation record. In Chapter 11, I explain that this can
create a security risk if input is read into the array without checking the amount of
input versus the array size. As I explain there, if the input runs past the end of the
array, it can overwrite other parts of the procedure’s activation record, or the activa-
tion records of the caller, the caller’s caller, and so forth, with potentially dangerous
results.



