Operating Systems and Middleware: Supporting Controlled Interaction
by Max Hailperin

The commercially published version of this work (ISBN 0-534-42369-8) was Copyright © 2007 by Thomson Course
Technology, a division of Thomson Learning, Inc., pursuant to an assignment of rights from the author.

This free re-release is Copyright © 2005-2010 by Max Hailperin, pursuant to an assignment of the rights back to him by
Course Technology, a division of Cengage Learning, Inc., successor-in-interest to the publisher. Rights to illustrations
rendered by the publisher were also assigned by Course Technology to Max Hailperin and those illustrations are included in
the license he grants for this free re-release.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

The free re-release was prepared from final page proofs and should be completely identical to the commercially published
version. In particular, all the errata listed on the web site still apply. (The author intends to release subsequent versions that
incorporate the corrections as well as updates and improvements. Subsequent versions may also be in a more easily
modifiable form to encourage participation by other contributors. Please email suggestions to max@gustavus.edu.)

Credits from the commercially published version:
Senior Product Manager: Alyssa Pratt
Managing Editor: Mary Franz
Development Editor: Jill Batistick
Senior Marketing Manager: Karen Seitz
Associate Product Manager: Jennifer Smith
Editorial Assistant: Allison Murphy
Senior Manufacturing Coordinator: Justin Palmeiro
Cover Designer: Deborah VanRooyen
Compositor: Interactive Composition Corporation

hailperin-163001

book November 16, 2005 10:42

CHAPTER

10

Messaging, RPC, and
Web Services

10.1 Introduction

Application programmers who create distributed systems of communicating processes
fundamentally rely upon the support for networking provided by operating systems;
this support was described in Chapter 9. Sometimes this reliance is direct; for example,
the application programs may use sockets to open connections between TCP ports and
then send byte streams that encode application messages. Increasingly, however, this
reliance is indirect because a middleware layer comes between the application program
and the socket API. The application programmer works in terms of the middleware-
supported abstractions, such as message queues and remotely accessible objects. The
middleware provides those abstractions by making use of the more fundamental oper-
ating system-supported facilities.

In this chapter, I will present two distinct styles of communication middleware.
Messaging systems, discussed in Section 10.2, support the one-way transmission of
messages. Application programmers can choose to use those messages in request-
response pairs, but the middleware remains oblivious to this pairing and treats each
message individually. Sending a request and receiving a response happen in separate
transactions, potentially at quite different times. For more tightly coupled interactions,
Remote Procedure Call (RPC) systems provide an alternative style of communication,

4 369 »

hailperin-163001 book November 16, 2005 10:42

370 » Chapter 10 Messaging, RPC, and Web Services

as presented in Section 10.3. Each time a process invokes an RPC operation, it sends
a request and then immediately waits for a response as part of the same transaction.
The RPC system makes the request-response pair appear to the application program as
a normal procedure call and return.

After presenting each of these styles of communication, I turn in Section 10.4
to their connection with web services. Web services use standardized communication
mechanisms to make programmed functionality available over the Internet. Most web
services fit the RPC model, though they can also use one-way messaging or (in theory)
more general message exchange patterns.

Finally, the chapter concludes, as usual, with a look at security issues in Section 10.5
and then exercises, projects, and notes.

10.2 Messaging Systems

Applications based on one-way transmission of messages use a form of middleware
known as messaging systems or message-oriented middleware (MOM). One popular exam-
ple of a messaging system is IBM’s WebSphere MQ, formerly known as MQSeries. One
popular vendor-neutral API for messaging is the Java Message Service (JMS), which is
part of J2EE.

Messaging systems support two different forms of messaging: message queuing and
publish/subscribe messaging. 1 already introduced message queuing in Section 5.2.2.
Here I will build on that introduction to message queuing and also provide an intro-
duction to publish/subscribe messaging.

Figure 10.1 illustrates the difference between the two forms of messaging. Mes-
sage queuing strongly decouples the timing of the client and the server, because the
queue will retain the messages until they are retrieved. (Optionally, the client can spec-
ify an expiration time for unretrieved messages.) The server need not be running at
the time a message is sent. On the other hand, the client is only weakly decoupled
from the server’s identity. Although the client doesn’t send the message to a specific
server, it does send it to a specific queue, which still creates a point-to-point architec-
tural structure, because each queue normally functions as the in-box for a particular
server. A point-to-point structure means that if the message is of interest to multiple
servers, the client needs to send it to multiple queues. The publish/subscribe architec-
ture, in contrast, strongly decouples publishers from any knowledge of the subscribers’
identities. Each message is sent to a general topic and from there is distributed to
any number of subscribers that have indicated their interest in the topic. However,

hailperin-163001

book November 16, 2005 10:42

10.2 Messaging Systems <« 371

Message Queuing Publish/Subscribe Messaging

Subscriber

Queue

Client Server Publisher Subscriber

1 3
@)

Subscriber

Figure 10.1 Message queuing involves three steps: (1) the client sends a message to a queue,
(2) the queue retains the message as long as necessary, (3) the server retrieves the message. Publish/
subscribe messaging involves a different sequence of three steps: (1) each subscriber subscribes
with one of the messaging system’s “topic” objects, (2) the publisher sends a message to the topic,
(8) the message is distributed to all current subscribers.

publish/subscribe messaging usually does not decouple timing. Messages are usually
only sent to current subscribers, not retained for future subscribers.

The portion of a messaging system managing topic objects for publish/subscribe
messaging is known as a broker. The broker is responsible for maintaining a list of
current subscribers for each topic and for distributing each incoming publication to
the current subscribers of the publication’s topic.

Section 5.2.2 explained the relationship between message queuing and transac-
tions. A transaction can retrieve messages from queues, do some processing, such as
updating a database, and send messages to queues. When the transaction commits, the
input messages are gone from their queues, the database is updated, and the output
messages are in their queues. If the transaction aborts, then the input messages remain
in their queues, the database remains unchanged, and the output messages have not
entered their queues.

This transactional nature of message queuing has an important consequence for
systems in which request messages are paired with response messages and will help
me explain the difference between messaging and RPC systems. Consider a client and
server coupled through request and response queues, as shown in Figure 10.2. The
client can generate a request message in one transaction and then in a second transac-
tion wait for a response message. However, it cannot do both in a single transaction,
or it will wait forever, having deadlocked itself. Until the transaction commits, the
request message doesn’t enter the request queue. As a result, the server has nothing to
respond to and won’t generate a response message. Therefore, the client will continue

hailperin-163001 book November 16, 2005 10:42

372 » Chapter 10 Messaging, RPC, and Web Services

Request queue

Client Server

Response queue

Figure 10.2 A client and server can engage in a request-response protocol using two message
queues. Typically, the client tags each request message with a unique identifying string, known as a
correlation ID. The server copies this ID into the resulting response message so that the client knows
to which request the response corresponds.

waiting for the response message and so the transaction won’t commit, completing
the deadlock. If your goal is to have the client make use of the server as one indivisible
step within a transaction, then you need to use RPC rather than messaging.

Publish/subscribe messaging can participate in transactions as well, but the results
are less interesting. Publishing is just like sending to a queue, in that the message
isn’t actually sent until the transaction commits. However, receipt of messages by sub-
scribers is handled differently. If a subscriber receives a message within a transaction
and then aborts the transaction, it cannot count on the message being redelivered
when the transaction is retried.

In either messaging model, a consumer may want to receive only selected mes-
sages that are of interest to it. For example, it may want to receive stock ticker mes-
sages with updated prices, but only for IBM stock and only if the price is less than
75 or more than 150. The program could receive all stock ticker messages (by read-
ing from a queue to which they are sent or by subscribing to a topic to which they are
published) and ignore those that are uninteresting. However, for the sake of efficiency,
messaging systems generally provide mechanisms to do the filtering prior to message
delivery.

In the publish/subscribe model, the selection of just IBM stock might be accom-
plished simply by having a sufficiently specific topic. Messaging systems generally
allow topics to be hierarchically structured, much like files in directory trees or
Internet domains within the DNS. Thus, a topic for IBM stock prices might be
finance/stockTicker/IBM. A subscriber interested only in this one stock could
subscribe to that specific topic, whereas a subscriber interested in all stock prices could
subscribe to finance/stockTicker/+, where the wildcard + indicates any one

hailperin-163001

book November 16, 2005 10:42

10.3 Remote Procedure Call <« 373

subtopic. Another wildcard, #, is fancier than needed in this case but can be useful in
other circumstances. A subscription to finance/stockTicker/# would receive not
only messages about each individual stock, such as IBM, but also general messages,
directed to finance/stockTicker itself, and more specialized messages, directed to
descendant subtopics any number of levels below finance/stockTicker/IBM and
its siblings.

This hierarchy of topics is limited, however. It fits the publish/subscribe model but
not the message queuing model, and it addresses only qualitative selection criteria that
naturally lead to distinct topics. In the example I gave earlier, it is unlikely that a system
architect would create three subtopics of IBM for under75, between75and150, and
over150. Among other reasons, there may be other subscribers interested in other
price ranges.

Therefore, messaging systems allow message consumers to specify more general
selection criteria. In the JMS API, for example, if s is a messaging Session and d is a
messaging Destination, that is, either a Queue or a Topic, then executing

s.createConsumer(d, "Symbol = ’‘IBM’ AND " +
"(Price < 75 OR Price > 150)")

will produce a Consumer object with the specified selector. Any receive operation
performed on that Consumer (or any MessageListener registered with that
consumer) will see only those messages satisfying the selection criterion.

10.3 Remote Procedure Call

The goal of Remote Procedure Call (RPC) middleware is to make request-response com-
munication as straightforward for application programmers to program as ordinary
procedure calls. The client application code calls a procedure in the ordinary way, that
is, passing in some arguments and obtaining a return value for its further use. The
procedure it calls just happens to reside in a separate server. Behind the scenes, the
middleware encodes the procedure arguments into a request message and extracts
the return value from the response method. Similarly, the server application code
can take the form of an ordinary procedure. By the time it is invoked, the procedure
arguments have already been extracted from the request message, freeing it from that
responsibility. Section 10.3.1 explains further the principles upon which RPC operates.
Section 10.3.2 provides a concrete example of using RPC in the particular form of Java
RMI (Remote Method Invocation). The subsequent section, 10.4, is devoted to web ser-
vices but also provides additional information on how RPC plays out in that context.

hailperin-163001 book November 16, 2005 10:42

374 » Chapter 10 Messaging, RPC, and Web Services

10.3.1 Principles of Operation for RPC

To understand how RPC middleware functions, it is helpful to think about the fact that
different procedures can present the same interface. For example, consider procedures
for squaring a number. You could have several different procedures that take a numeric
argument, compute the square, and return it. One might work by multiplying the
number by itself. Another might use a fancy calculation involving logarithms. And
a third might open up a network instant-messaging connection to a bored teenager,
ask the teenager what the square of the number is, then return the value it receives,
correctly extracted from the textual instant-messaging response. This third procedure
is known as a proxy for the teenager. The proxy’s method of squaring the number
involves neither multiplication nor logarithms, but rather delegation of responsibility.
However, the proxy still is presenting the same interface as either of the other two
procedures.

Figure 10.3 shows how RPC middleware uses a proxy to put the client in the posi-
tion of making a normal procedure call. The client application code actually does make
a normal procedure call; that much is no illusion. However, it only gives the illusion
of calling the server procedure that does the real computation. Instead, the called pro-
cedure is a proxy standing in for the server procedure; the proxy is often known as
a stub. The stub proxy discharges its responsibility not by doing any actual compu-
tation itself, but by using request and response messages to communicate with the
server.

The stub proxy suffices to hide communication issues from the application pro-
grammer writing the client code. In some cases, that is all that is needed, and the
server is written by a networking expert who can directly write code to handle request
and response messages. More typically, however, the server code is written by another

Client
(1) procedure (2) request
. call message
Client
application S Server
code proxy
(4) procedure (3) response
return message

Figure 10.3 In Remote Procedure Call, application code makes a normal procedure call to a stub
proxy, which doesn’t carry out the requested computation itself, but rather sends a request message
to the server and then turns the response message into the procedure return value.

hailperin-163001 book November 16, 2005 10:42

10.3 Remote Procedure Call <« 375

Client Server
(1) procedure (2) request (3) procedure
Ci call message call S
'1enjc Stub Skeleton/ gt
application : application
code proxy tie code
(6) procedure (5) response (4) procedure
return message return

Figure 10.4 In order for the server application code to be free from communication details, it can
be a normal procedure invoked by a portion of the RPC runtime sometimes called a skeleton or a tie.

Distributed system

(1) procedure
call
Client Server
application application
code code
(2) procedure
return

Figure 10.5 The application programmer’s view of an RPC system has the client code apparently
making a direct call to the server procedure; the RPC proxy mechanism is invisible.

application programmer who appreciates middleware support. As shown in Figure 10.4,
the server application code can be a normal procedure, called the same way it would be
if it were running on the same machine with the client. Once again, the illusion is only
partial. The server application code really is being called with an ordinary procedure
call. The only illusion concerns what code is doing the calling. From an application
standpoint, the caller seems to be the client. However, the caller really is a dedicated
portion of the RPC runtime system, known as a skeleton or a tie, the purpose of which
is to call the procedure in response to the request message. See Figure 10.5 for the
application programmer’s view of the result; the middleware communication disap-
pears from view and the client application code seems to be directly calling the server
application procedure, as though they were part of a single system.

Early versions of the RPC communication model were based on ordinary proce-
dure calls, whereas more recent versions are based on the object-oriented concept of
method invocation. The basic principles are the same, however, and the name RPC is
commonly understood to include method invocation as well as procedure calling.

hailperin-163001 book November 16, 2005 10:42

376 P Chapter 10 Messaging, RPC, and Web Services

A key example of a non-object-oriented RPC standard is Open Network Comput-
ing (ONC) RPC, which was developed at Sun Microsystems and became an Internet
standard. ONC RPC serves as the foundation for NES, the Network File System dis-
cussed in Section 9.2.3. Each NFS operation, such as reading from a file, is carried out
by calling an RPC stub procedure, which takes responsibility for packaging the proce-
dure arguments into a request message and for extracting the return value from the
response message.

In object-oriented versions of RPC, the stub proxy is an object presenting the same
interface as the server object. That is, the same repertoire of methods can be invoked
on it. The stub uses a uniform strategy for handling all methods: it translates method
invocations into appropriate request messages.

Two significant object-oriented RPC standards are CORBA and RMI. CORBA
(Common Object Request Broker Architecture) is a complicated language-neutral standard
that allows code written in one language to call code written in another language and
located elsewhere in a distributed system. RMI (Remote Method Invocation) is a consid-
erably simpler mechanism included as part of the Java standard API; part of its simplic-
ity comes from needing to support only a single programming language. Because RMI
can optionally use CORBA’s communication protocol, the Internet Inter-Orb Protocol
(IIOP), the two systems can interoperate.

One important feature of object-oriented RPC systems such as RMI is that the val-
ues communicated as method arguments and return values can include references to
other objects. That is, a remotely invoked method can operate not only on basic val-
ues, such as integers or strings, but also on user-defined types of objects. One remotely
accessible object can be passed a reference that refers to another remotely accessible
object. In fact, this is the way most objects find out about other objects to communi-
cate with after getting past an initial startup phase.

To initially get communication started, client objects typically look up server
objects using a registry, which is a specialized server that maintains a correspondence
between textual names and references to the remotely accessible objects. (These cor-
respondences are known as bindings.) The registry itself can be located, because it
listens for connections on a prearranged port. When an application server object is
created that a client might want to locate, the server object is bound to a name in the
registry. The client then presents the same textual name to the registry in a lookup
operation and thereby receives a reference to the initial server object it should
contact.

After this initial contact is made, the objects can use the arguments and return
values of remote method invocations to start passing each other references to addi-
tional objects that are not listed in the registry. Pretty soon any number of client and

hailperin-163001

book November 16, 2005 10:42

10.3 Remote Procedure Call <« 377

server objects can have references to one another and be invoking methods on each
other.

Section 10.3.2 is occupied by an RMI programming example designed to reinforce
the aforementioned point, that remote objects are located not only using the registry,
but also by being passed as references. This example illustrates the way in which an
application programmer uses RMI and thereby complements the preceding general
discussion of how RPC stubs and skeletons work. I do not provide any more detailed
information on the inner workings of RMI. However, in Section 10.4, I show how RPC
messages are formatted in the web services environment.

10.3.2 An Example Using Java RMI

Using RM], it is possible to develop an implementation of the publish/subscribe mes-
saging model, in which publishers send messages to topic objects, which forward the
messages along to subscribers. The code in this section shows such an implementation
in the simplest possible form. In particular, this code has the following limitations; to
address each limitation, there is at least one corresponding Programming Project:

e The message delivery is fully synchronous. That is, the publisher asks the topic
object to deliver a message; control does not return to the publisher until the mes-
sage has been delivered to all the subscribers. Programming Projects 10.2 and 10.3
address this.

e The example programs support only a single topic. Programming Projects 10.4 and
10.5 address this.

e In the example code, there is no way for a subscriber to explicitly unsubscribe
from a topic. However, the code does support subscribers that terminate, lose
communication, or otherwise fail. Programming Project 10.6 provides explicit
unsubscription.

e The example code includes simple command-line interfaces for sending textual
strings as messages and for displaying received messages on the terminal. These
suffice to demonstrate the communication but do not have the appeal of a chat-
room application or multi-player game. Programming Project 10.7 provides the
opportunity to address this shortcoming.

When using RMI, each object that is remotely accessible must implement a Java
interface that extends java.rmi.Remote. Each method in that interface must be
declared as potentially throwing java.rmi.RemoteException. This potential for an
exception is necessary because even if the underlying operation cannot possibly fail,

hailperin-163001 book November 16, 2005 10:42

378 P Chapter 10 Messaging, RPC, and Web Services

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface MessageRecipient extends Remote {
void receive(String message) throws RemoteException;

Figure 10.6 The MessageRecipient interface describes the common feature shared by sub-
scribers and the central topic objects that redistribute published messages to subscribers: any of
these objects can receive a message.

import java.rmi.RemoteException;
public interface Topic extends MessageRecipient {

void subscribe (MessageRecipient subscriber)
throws RemoteException;

Figure 10.7 The Topic interface provides an operation for subscribers to use to register their inter-
est in receiving messages. By extending the MessageRecipient interface, the Topic interface
is also prepared to receive messages from publishers.

the remote invocation of that operation can fail in myriad ways, such as through a net-
work disconnection or a crash of the machine on which the remote object is located.
Figure 10.6 shows the source code for a simple remote interface implemented by sub-
scribers and also by topic objects. The reason why these two categories of participants
in the publish/subscribe model implement this same interface is that they have some-
thing in common: they both receive messages.

Subscribers directly implement the MessageRecipient interface, as you will see
later. However, topic objects need to implement an extension of the interface, because
they can do more than receive messages; they can also add subscribers. Figure 10.7
shows the Topic interface, which extends MessageRecipient through the addition
of a subscribe method. Notice that the argument passed to subscribe is itself a
MessageRecipient. This allows a reference to one remotely accessible object (the
subscriber) to be passed to another (the topic) for its later use.

Having seen these two interfaces for remotely accessible objects, you are now
ready to see an example of code that makes use of such an object. Figure 10.8 con-
tains a simple program for sending a textual message (given as the first command-line

hailperin-163001

book November 16, 2005 10:42

10.3 Remote Procedure Call <« 379

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class Publisher {

public static void main(String[] args) {

if (args.length < 1 || args.length > 2){
System.err.println("Usage: java Publisher message [host]"):;
System.exit (1) ;

}

String message = args[0];

String hostname = args.length > 1 ? args[1l] : null;

try {
Registry registry = LocateRegistry.getRegistry(hostname);
Topic topic = (Topic) registry.lookup("topic.1l");
topic.receive(message);

} catch (Exception e) {
System.err.println("caught an exception: " + e);
e.printStackTrace();

Figure 10.8 This program uses the registry to locate the remote object that is named topic.1
and that implements the Topic interface. The program then asks that object to receive a message.

argument) to a remote object implementing the Topic interface. The specific remote
object is looked up with the aid of a registry, that is, a service within RMI that records
name/object pairs. The registry is located on a server computer whose hostname is
specified as the second command-line argument or on the local computer if no host-
name is given.

Let’s turn next to an example of how a remotely accessible object can be created
and listed in the registry. The TopicServer class, as shown in Figures 10.9 and 10.10,
implements the Topic interface. Each TopicServer keeps track of its current sub-
scribers; additions happen in the subscribe method, and deletions happen when a
message cannot be successfully delivered. Because the RMI infrastructure is allowed
to invoke each operation in its own thread, the remote operations are marked as
synchronized so as to provide mutual exclusion. This prevents any races in the
manipulations of the list of subscribers. When the TopicServer program is run from
the command line, the main method creates an instance of the class, exports it for

hailperin-163001 book November 16, 2005 10:42

380 P Chapter 10 Messaging, RPC, and Web Services

import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;
import java.util.List;

import java.util.ArrayList;

public class TopicServer implements Topic {
private List<MessageRecipient> subscribers;

public TopicServer () {
subscribers = new ArrayList<MessageRecipient>();

public synchronized void receive(String message)
throws RemoteException {
List<MessageRecipient> successes =
new ArrayList<MessageRecipient>();
for (MessageRecipient subscriber : subscribers) {
try {
subscriber.receive (message) ;
successes.add(subscriber) ;
} catch(Exception e) {
// silently drop any subscriber that fails

}

subscribers = successes;

Figure 10.9 The TopicServer class continues in Figure 10.10. The receive method shown
here is remotely invoked by publishers and itself remotely invokes the receive method of
subscribers.

remote access, and places it in the local registry, using the same topic.1 name as the
Publisher class looks up.

The final component of the example publish/subscribe system is the Subscriber
class, as shown in Figure 10.11. This class provides a simple test program which dis-
plays all the messages it receives. Like the Publisher class, it uses the registry on a
specified host or on the local host if none is specified. Also like the Publisher class,
it looks up the name topic.1 in that registry, thereby obtaining a reference to some
remote object implementing the Topic interface. The reference will actually be to

hailperin-163001

book November 16, 2005 10:42

10.3 Remote Procedure Call <« 381

public synchronized void subscribe (MessageRecipient subscriber)
throws RemoteException ({
subscribers.add(subscriber) ;

public static void main(String argsl[]) {

try {
TopicServer obj = new TopicServer();
Topic stub =

(Topic) UnicastRemoteObject.exportObject (obj, 0);

Registry registry = LocateRegistry.getRegistry():;
registry.rebind("topic.1l", stub);
System.err.println("Server ready"):;

} catch (Exception e) {
System.err.println("Server exception: " + e.toString()):
e.printStackTrace();

Figure 10.10 This continuation of the TopicServer class, begun in Figure 10.9, shows how
remote objects are created, exported (that is, made remotely accessible), and bound to a name in
the registry.

a proxy that implements the interface. However, the proxy will be communicating
with an instance of the TopicServer class. Unlike the Publisher, the Subscriber
is itself a remotely accessible object. It is created and exported just like the Topic-
Server is. However, it is not bound in the registry; the TopicServer does not locate
its subscribers by name.

Before you can successfully run the TopicServer and test it using the Publisher
and Subscriber programs, you will probably need to run the rmiregistry program
that comes as part of the Java system. The details of how you run this program are
system-specific, as is the mechanism for ensuring that all components of the overall
RMI system have access to your classes. Therefore, you are likely to need to consult the
documentation for your specific Java system in order to successfully test the sample
code or complete the programming projects. Once you get over these technical hur-
dles, however, you will be able to communicate among multiple machines, so long as
they are all running Java and so long as no network firewalls impede communication
among them. In the following section, you will see how web services provide an alter-
nate RPC mechanism that can allow communication between an even wider assort-
ment of machines.

hailperin-163001 book November 16, 2005 10:42

382 P Chapter 10 Messaging, RPC, and Web Services

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Subscriber implements MessageRecipient {

public synchronized void receive(String message)
throws RemoteException ({
System.out.println(message);

public static void main(String[] args) {

if (args.length > 1) {
System.err.println("Usage: java Subscriber [hostname]");
System.exit (1) ;

}

String hostname = args.length > 0 ? args[0] : null;

try {
Registry registry = LocateRegistry.getRegistry(hostname) ;
Topic topic = (Topic) registry.lookup("topic.1l");
Subscriber obj = new Subscriber():;
MessageRecipient stub = (MessageRecipient)

UnicastRemoteObject.exportObject (obj, 0);

topic.subscribe(stub);

} catch (Exception e) {
System.err.println("caught an exception: " + e);
e.printStackTrace();

Figure 10.11 Instances of the Subscriber class are created and exported the same way as
TopicServers are, so that they can be remotely accessed. However, they are not bound in the
registry. Instead, the stub referring to the Subscriber is passed to the subscribe method so
the TopicServer can store the reference away for later.

10.4 Web Services

A web service is a communicating component that complies with a collection of Inter-
net standards designed to share as much as possible with the standards used for ordi-
nary web browsing. This allows web services to take advantage of the web'’s popularity,

hailperin-163001

book November 16, 2005 10:42

10.4 Web Services <« 383

hopefully making communication between programmed components as ubiquitous
as the communication with humans facilitated by the web.

The web services standards are based on XML (Extensible Markup Language), a form
of structured textual document. All XML documents have nested components with
explicitly indicated types and attributes. The specific kinds of nested components
depend on the XML application. For example, where XML is used for request messages,
the component parts indicate what operation is being invoked and what arguments
are being supplied to it. By contrast, where XML is used not to invoke an operation
but to define an interface, the component parts enumerate what the interface’s oper-
ations are, what kinds of messages should be exchanged to invoke those operations,
and so forth.

Web service interfaces are described using an XML notation known as WSDL (Web
Services Description Language). This notation is rather verbose and is not usually read or
written by humans. Instead, the humans normally use user-friendly tools to process
the WSDL, which serves as a common interchange format accepted by all the tools.
However, you can get a feel for WSDL by looking at the excerpts shown in Figure 10.12.
The GoogleSearch API, from which these are taken, provides operations for searching
for web pages. However, it also provides an operation for suggesting spelling correc-
tions, as shown here. The operation involves two message types, one for request mes-
sages and one for response messages. Request messages contain two string arguments;
one is an access control key that Google demands so as to limit use of their service,

<message name="doSpellingSuggestion">

<part name="key" type="xsd:string"/>
<part name="phrase" type="xsd:string"/>
</message>

<message name="doSpellingSuggestionResponse">
<part name="return" type="xsd:string"/>
</message>

<operation name="doSpellingSuggestion">

<input message="typens:doSpellingSuggestion"/>

<output message="typens:doSpellingSuggestionResponse"/>
</operation>

Figure 10.12 These excerpts from the WSDL definition of the GoogleSearch API show the two
messages used to ask for and receive a spelling suggestion and the operation that combines those
two messages.

hailperin-163001 book November 16, 2005 10:42

384 P Chapter 10 Messaging, RPC, and Web Services

and the other is the phrase to correct. The response message contains just the returned
value, a string containing the suggested correction.

Notice that in Figure 10.12, the doSpellingSuggestion operation is explicitly
specified as using an input request message and an output response message. Because
WSDL provides this detailed specification of how operations exchange messages, it can
be used for patterns of communication other than RPC. The most common usage is
for RPC, as with the GoogleSearch API. However, an operation can have only an input
message, in which case the web service fits the messaging model instead of the RPC
model. In theory, an operation could also specify a more extended message exchange
pattern, with multiple input and output messages; however, | am unaware of any use
of this feature.

The WSDL standard allows providers of web services to make their interfaces
known to potential users without concern for what programming language or imple-
mentation technology they use. For example, I cannot tell from the WSDL excerpted
in Figure 10.12 whether Google is using J2EE, Microsoft’s .NET, or some other tech-
nology. I am free to use whichever I choose in writing my client.

For this goal of interoperability to be realized, the service providers and users
need to agree on more than just WSDL as a means of specifying interfaces. They also
need to agree upon the specific format for transmitting the request and response mes-
sages. For this purpose, web services use a second XML format, known as SOAP. (SOAP
once stood for Simple Object Access Protocol but no longer does.) Each SOAP docu-
ment is a message and should match one of the message descriptions from the WSDL
interface description. For example, you saw WSDL message descriptions for the two
message types doSpellingSuggestion and doSpellingSuggestionResponse.
Figures 10.13 and 10.14 show specific SOAP messages that fit these two descriptions.
The first one is a message asking for suggestions as to how “middlewear” should really
be spelled, and the second is a message responding with the suggestion of
“middleware.”

Some transport mechanism needs to underlie SOAP. That mechanism delivers the
string of bytes shown in Figure 10.13 to the server and then delivers the bytes shown
in Figure 10.14 back to the client. The most common transport mechanism for SOAP
is HTTD, the application-layer protocol normally used to access web pages. Notice that
in web services terminology, HTTP is referred to as a transport, because it conveys the
SOAP messages, whereas in traditional networking terminology, the transport layer
is one layer lower, where TCP operates. In effect, web services are building a super-
application-layer on top of the application layer, thereby treating the HTTP applica-
tion layer as though it were only a transport layer. As mentioned in Chapter 9, one
advantage of this arrangement is that it circumvents obstacles such as firewalls that

hailperin-163001 book November 16, 2005 10:42

10.4 Web Services <« 385

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns0="urn:GoogleSearch"
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<env:Body>
<ns0:doSpellingSuggestion>
<key xsi:type="xsd:string">GoogleAccessControlKeyHere</key>
<phrase xsi:type="xsd:string">middlewear</phrase>
</ns0:doSpellingSuggestion>
</env:Body>
</env:Envelope>

Figure 10.13 This example SOAP message asks Google for spelling suggestions on the string
middlewear. This message has been broken into indented lines for legibility and has a place-
holder where a real message would contain an access-control key issued by Google, which | am not
allowed to divulge.

<?xml version=’'1.0’ encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns : SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema" >
<SOAP-ENV:Body>
<nsl:doSpellingSuggestionResponse
xmlns:nsl="urn:GoogleSearch"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string">middleware</return>
</nsl:doSpellingSuggestionResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 10.14 This example SOAP message returns middleware as a spelling suggestion in
response to middlewear. (Line breaks and indentation changed for legibility.)

hailperin-163001 book November 16, 2005 10:42

386 P Chapter 10 Messaging, RPC, and Web Services

stand in the way of deploying new application-layer protocols. Almost any Internet
connection is open to HTTP traffic.

When HTTP is used for a request-response message pair, as in the spelling sug-
gestion example, the client opens a connection to the server exactly as it would to
an ordinary web server, providing a URL that represents the particular web service,
known as an endpoint address. The client then sends the SOAP request message as the
body of a POST method, the kind of HTTP transaction more traditionally used for
filled-in forms. The server sends the SOAP response message in the body of its HTTP
response.

Although SOAP is most commonly used with HTTP, the web services architecture
is intentionally neutral with regard to transport. SOAP messages can equally well be
sent as the bodies of email messages, using SMTP, or as messages in a reliable message-
queuing system, such as WebSphere MQ.

If you remember that the goal of communication middleware is to ease appli-
cation programmers’ burdens, it should be obvious that SOAP and WSDL are not
intended to be used without the aid of automated tools. You could, in principle, read
the GoogleSearch API's WSDL specification yourself and based on it write code that
sent the SOAP message shown in Figure 10.13 over HTTP. You could do this by using
nothing more than the ability to open up a TCP socket and send bytes through it.
Then you could read in from the socket the bytes constituting Figure 10.14’s response
and arduously extract from it the spelling suggestion being returned. However, this
would be making a distributed system harder to construct, not easier.

Luckily, there are a variety of language-specific and vendor-specific tools that make
web services much easier to construct. In particular, both .NET and J2EE have support
for web services. As an example, let’s look at JAX-RPC (Java API for XML-Based RPC), a
component of J2EE.

In Programming Project 10.10, you can use a JAX-RPC tool to automatically trans-
late the GoogleSearch WSDL file into a Java interface that contains ordinary Java-
callable methods for each of the web service’s operations. For example, it contains

public String doSpellingSuggestion(String key, String phrase);
Using this, you can set a variable to the suggested spelling with just this code:

suggestion = aGoogleSearch.doSpellingSuggestion (
"GoogleAccessControlKeyHere" ,
"middlewear") ;

The Java object named aGoogleSearch is a stub proxy implementing the interface
created from the WSDL file; a few prior lines of code would set it up. This proxy takes
care of generating the big, messy SOAP request message, sending it, reading in the

hailperin-163001

book November 16, 2005 10:42

10.5 Security and Communication Middleware <« 387

response, and picking the suggestion out from amid all its SOAP wrappings. You, the
application programmer, don’t need to do any of that.

The WSDL and SOAP facilities described thus far provide the core facilities for web
services, but there are many other standards, and proposed standards, for less central
aspects. The entire area is in considerable flux with many competing draft standards.
However, one other standard is approximately as solid as WSDL and SOAP are. That
standard, UDDI (Universal Description, Discovery, and Integration), provides a way for web
service providers to list their services in a registry and for potential users to discover
them by looking in the registry for services matching a description. UDDI registries
are themselves web services, accessed via SOAP messages in accordance with a WSDL
specification.

10.5 Security and Communication Middleware

Messaging systems and RPC servers often use ACLs to control access, much like file
systems do. For example, a broker with a hierarchy of publish/subscribe topics can
associate two ACLs with each topic in the hierarchy: one specifying the users or groups
that may publish, and the other specifying those that may subscribe. ACLs on subtopics
take precedence over those on more general topics. Thus, security can be specified
as precisely as necessary for those subtopics where it matters while allowing most
subtopics the convenience of inheriting an ancestor topic’s ACL.

An ACL lists the users or groups that should be granted access, but this still leaves
open one of the most difficult aspects of security in a distributed system. Namely, how
should a server know which user’s access rights apply for each incoming connection?
Any robust solution to this problem relies on the cryptographic mechanisms described
in Section 9.6. I can illustrate this using an example from web services.

Recall that the exchange of SOAP messages between a client and web service nor-
mally takes place using the same HTTP protocol as is used for browsing the web. As
such, the same cryptographic security mechanisms are used by interposing the Secure
Sockets Layer, SSL, between HTTP and the underlying TCP connection.

Just as with a secure web site, a secure web service identifies itself by using a cer-
tificate, which is a document attesting to the server’s identity and to the public half of
the server’s asymmetric key pair. This public key can be used by the client to check the
server’s digitally signed messages and also to send the server a secret key for confiden-
tial communication. The certificate itself is digitally signed by some trusted Certifica-
tion Authority (CA), an organization that has made its public key well known and that
can be counted on to check out the legitimacy of another organization’s or individual’s
identity claim before issuing a certificate.

hailperin-163001 book November 16, 2005 10:42

388 P Chapter 10 Messaging, RPC, and Web Services

The server’s certificate allows the client to trust that it is communicating with
the real server and not an impostor. However, the server still has no idea which user
identity to associate with the client. Two options exist for solving that problem, one
that continues to follow the lead of ordinary web sites used by humans and another
that may be better suited to widespread deployment of web services. I will present the
solution first that you are probably familiar with from your own use of the web and
then the more robust alternative.

When you connect to a secure web site, your browser checks the server’s certifi-
cate and if all is well signals this fact by showing you a locked padlock. The server then
typically asks you to enter a username and password for the site. The strings that you
enter are sent over the SSL-encrypted communication channel and so are not subject
to eavesdropping or tampering in transit. Moreover, because your browser checked the
server’s certificate, you can be sure you aren’t sending your password to a con artist.
The server gets the strings in decrypted form and checks them against its user database.
This style of authentication relies on you and the site having a shared secret, the pass-
word. In general, each client/server pair requires a shared secret established in advance.

This first style of client authentication, which is provided by HTTP under the name
basic authentication, can be a workable method for web services that are not widely
deployed, especially for those that are deployed only internally to an enterprise. In that
context, the various web services will ordinarily be controlled by the same administra-
tors and as such can all share a common authentication server that keeps track of users
with their passwords. Thus, a secret password needs to be established for each user, but
not for each user/service pair. Even across enterprise boundaries, basic authentication
may suffice for web services that have only a small number of users, such as a web
service used to facilitate one particular relationship between a pair of enterprises.

Before I move on to the more sophisticated alternative, it is worth contrasting the
first alternative, basic authentication using SSL, with weaker password-based authen-
tication. Consider, for example, the GoogleSearch API’s spelling suggestion operation,
which was shown in Section 10.4. This operation takes a secret access-control key as an
argument in the request message itself. The access-control key is issued by Google and
essentially acts as a combination of username and password in a single string. How-
ever, the GoogleSearch web service does not use SSL; it uses ordinary unencrypted
HTTP directly over TCP. One consequence is that the access control keys are subject to
eavesdropping and so could be captured and then reused. However, there is a second
way in which a malefactor could capture a key.

Recall that with SSL, the client program receives a certificate of the server’s iden-
tity, protecting it against impostors. Because GoogleSearch is not using SSL, you could
be sending your misspellings to an impostor, perhaps someone who wants to embar-
rass you. Moreover, because you send your key along, you could also be sending your

hailperin-163001

book November 16, 2005 10:42

10.5 Security and Communication Middleware <« 389

key to an impostor. This helps explain the significance of SSL’s server authentication.
It not only protects the client from rogue servers, but also protects the server from
misuse through password capture. Even if you don’t care whether your misspellings
become public knowledge, Google presumably cares that their service isn’t used indis-
criminately. Otherwise they would not have established access-control keys.

What can you conclude, then, about Google’s security design? Presumably they
decided that their service was valuable enough to make some attempt to discourage
casual misuse, but not so valuable that they were willing to pay the price of SSL cryp-
tography to keep determined adversaries away. Also, their main concern is not with
the actual identity of the user, but with limiting the number of searches made by any
one user. If someone captures your GoogleSearch key, they will simply share your daily
limit on searches, not imposing any extra burden on Google. Thus, Google’s design
stems from a well thought-out cost-benefit analysis, paradigmatic of how security deci-
sions ought to be made. They did not make a mistake in using passwords without SSL.
However, you would be making a mistake to blindly emulate their security mechanism
on a web service of greater value.

Let us return, then, to security mechanisms suitable for high-value targets that
are likely to attract serious attackers. Recall that the problem with using HTTP’s basic
authentication over SSL is that it requires a shared secret password for each pair of
client and server. If web services are to form a ubiquitous Internet-wide economy, as
some prognosticators suggest, this will not be workable. Any client must be able to
securely access any web service without prearrangement.

To solve this problem, web services can use the mutual authentication feature of SSL,
which is almost never used for ordinary human-oriented web sites. In mutual authen-
tication, both the client and the server have digitally-signed certificates obtained from
trusted Certification Authorities. They exchange these certificates in the initial setup
handshake that starts an SSL connection. Thus, without needing any usernames or
passwords, each knows the identity of its communication partner for the entire dura-
tion of the connection. Mutual authentication is impractical for ordinary consumer-
oriented web browsing, because merchants don’t want to require all their customers
to go to the trouble and expense of getting certificates. However, for the business-to-
business communications where web services are expected to play their major role,
mutual authentication seems well suited. It does, however, still have limitations, as I
explain next.

The use of SSL, sometimes with mutual authentication, is widely deployed in prac-
tical web service applications. It also is incorporated in the most mature standards for
web services; the Web Services Interoperability Organization’s Basic Profile specifies
that web service instances may require the use of HI'TP over SSL and, in particular,
may require mutual authentication. However, this approach to web service security

hailperin-163001 book November 16, 2005 10:42

390 P Chapter 10 Messaging, RPC, and Web Services

has a fundamental limitation, with the result that more sophisticated, less mature
standards take a different approach. The fundamental limitation is that SSL secures
communication channels, rather than securing the SOAP messages sent across those
channels.

To understand the difference between securing a channel and securing a message,
consider the fact that several SOAP messages, originated by different users running
different applications, may be sent across a single network connection. Consider also
the fact that a single SOAP message may be relayed through a whole succession of
network connections on its way from its originator to its ultimate destination. In both
cases, SSL allows each computer to be sure of the authenticity of the neighboring
computer, but it doesn’t provide any direct support for associating the SOAP message
with its author.

Therefore, the Web Services Security standard provides a mechanism whereby the
XML format of a SOAP message can directly contain a digital signature for the mes-
sage. Standards also govern the transmission of XML in encrypted form and the use of
XML to send certificates. Using these mechanisms, the Web Services Interoperability
Organization’s Basic Security Profile, currently only a working draft, provides require-
ments for SOAP messages to be encrypted and digitally signed. Because the signature
is on the message itself, it can be forwarded along with the message through relay
channels and has sufficient specificity to allow messages of varying origins to share a
network connection.

One final advantage of the Web Services Security approach compared with SSL
is that SOAP messages that have been digitally signed support non-repudiation, as
described in Section 9.6. That is, because the recipient is in no better position to forge
a message than anyone else would be, the recipient can present the message to a third
party with a convincing argument that it came from the apparent sender. Today, web
services are largely used within organizations and between close business partners with
a high degree of mutual trust. However, as web services spread into more arms-length
dealings between parties that have no established relationship, non-repudiation will
become more important. Moreover, even if the communicating enterprises have a trust
relationship, individual employees may be corrupt; digital signatures limit the scope
of investigation that is needed if tampering is suspected.

Exercises
10.1 How does messaging differ from sending bytes over a TCP connection?
10.2 How does messaging differ from sending an email message?

10.3 How does messaging differ from RPC?

hailperin-163001

book

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

November 16, 2005 10:42

Exercises <« 391

Does using response messages turn a message-queuing system into the equiva-
lent of an RPC system? Why or why not?

Are web services an alternative to messaging and RPC systems, that is, a third
kind of communication middleware? Why or why not?

For each of the following communication methods, give one example appli-
cation scenario where you think it would be appropriate: message queuing,
publish/subscribe messaging, RPC. In each case, justify your choice of commu-
nication method.

Recall that in publish/subscribe topic hierarchies, the wildcard + represents one
component topic, whereas # represents a sequence of zero or more components
separated by slashes. Suppose a publish/subscribe system has topics a, b, a/c,
a/d,b/c,b/e,a/c/e,and a/d/e. For each of the following subscriptions, spec-
ify which of those topics would be included: a, a/+, a/#, a/c/+, a/+/e, #/e.

Suppose s is a JMS messaging session and d is a JMS messaging destination.
Show how to create a Consumer that would receive all messages sent to 4
containing a Symbol of IBM and that would also receive all those containing a
Price of 0, independent of their Symbol.

In the RMI programming example, suppose several Subscriber objects are all
subscribed to a single TopicServer and that several Publisher objects send
messages to that TopicServer. Will all the Subscribers necessarily print the
messages in the same order? Explain why or why not.

In the TopicServer implementation shown in Figures 10.9 and 10.10 on
pages 380 and 381, the receive method invokes each subscriber’s receive
method. This means the TopicServer’s receive method will not return to its
caller until after all of the subscribers have received the message. Consider an
alternative version of the TopicServer, in which the receive method simply
places the message into a temporary holding area and hence can quickly return
to its caller. Meanwhile, a separate thread running in the TopicServer repeat-
edly loops, retrieving messages from the holding area and sending each in turn
to the subscribers. What Java class from Chapter 4 would be appropriate to use
for the holding area? Describe the pattern of synchronization provided by that
class in terms that are specific to this particular application.

The text shown in Figure 10.15 has the right form to be a legal SOAP message,

but it would not be legitimate to send this message to the GoogleSearch web
service. Why not?

Section 10.5 mentions one reason why mutual authentication using certifi-
cates is not common in the human-oriented web: merchants don’t want to

hailperin-163001 book November 16, 2005 10:42

392 P Chapter 10 Messaging, RPC, and Web Services

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns0="urn:GoogleSearch"
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<env:Body>

<ns0:doSpellingSuggestion>

<key xsi:type="xsd:int">314159</key>
<phrase xsi:type="xsd:string">middlewear</phrase>

</ns0:doSpellingSuggestion>
</env:Body>
</env:Envelope>

Figure 10.15 This is a legal SOAP message but is not legitimate for sending to the GoogleSearch
web service.

turn customers off by requiring them to get certificates. One item of context
here is that most consumers do business with only a small number of mer-
chants. This is starting to change, as more businesses develop online presences
and as consumers start branching out and shopping online for more than just
books, music, videos, and airline tickets. Can you see any reason why this
change might affect consumers’ willingness to acquire certificates rather than
use passwords?

2 Programming Projects

10.1

10.2

10.3

Create an RMI analog of the message-storage server of Figure 9.7 on page 343
and its companion client of Figure 9.8 on page 344.

Modify the TopicServer class shown in Figures 10.9 and 10.10 on pages 380
and 381 as described in Exercise 10.10. Be sure to correctly synchronize access
to the list of subscribers.

Exercise 10.10 describes one way to modify the TopicServer class so that the
receive method does not need to wait for each subscriber’s receive method,
at least under normal circumstances. An alternative design to achieve that same
goal would be for the TopicServer’s receive method to create a new thread
for each incoming message. The thread would deliver that one message to the

hailperin-163001

book

10.4

10.5

10.6

10.7

10.8

November 16, 2005 10:42

Programming Projects <« 393

subscribers. Modify the TopicServer class shown in Figures 10.9 and 10.10 on
pages 380 and 381 in this alternate way. Be sure to correctly synchronize access
to the list of subscribers.

In the RMI example code given in Section 10.3.2, only a single topic is used,
bound in the registry to the name topic.1l. Show how the Publisher,
TopicServer, and Subscriber programs can be generalized to take a topic
name as an additional command line argument, with each topic separately
bound in the registry. Demonstrate the concurrent execution of two different
topic objects on the same host, each with its own subscribers.

In Programming Project 10.4, you accommodated multiple publish/subscribe
topics by having a separate TopicServer for each and by registering each in the
registry. An alternative design would be to have a single TopicServer object,
but with the receive and subscribe methods taking an extra argument that
is the topic name. Develop and demonstrate the code for this approach. You
may want to include extra methods for such purposes as adding topics and
obtaining a list of the current topics.

The publish/subscribe system provided as an RMI example in Section 10.3.2
does not include a method for unsubscribing from a topic. Arguably, such a
method would be redundant, because the TopicServer class is prepared for
subscribers that fail. A subscriber that wishes to unsubscribe could simply
arrange to intentionally fail. However, the design might be cleaner and more
flexible if the Topic interface and TopicServer class did support an
unsubscribe method. Add one and demonstrate its use.

Section 10.3.2 shows how RMI can be used to convey textual messages from
publishers to subscribers by way of intermediate topic objects. If you have the
requisite skill in building user interfaces in Java, you could use this RMI mech-
anism as the foundation for a chat-room application or a multi-player game.
Write such a program. Depending on your design, you may want to incorpo-
rate some of the features from earlier programming projects; for example, mul-
tiple topics could support multiple chat rooms. You are also welcome to change
the message type; an application-specific class of game moves might be more
appropriate than textual strings.

The Publisher class in Figure 10.8 on page 379 makes use of the Topic inter-
face even though the MessageRecipient interface would suffice. Change the
class to use the more general interface and demonstrate that, with appropriate
changes elsewhere, the Publisher can wind up communicating either directly
with a Subscriber or with an intermediary TopicServer as before.

hailperin-163001 book November 16, 2005 10:42

394 p Chapter 10 Messaging, RPC, and Web Services

10.9 The Topic interface in Figure 10.7 on page 378 extends MessageRecipient
and also uses that same interface as the argument type for the subscribe
method. Demonstrate how this allows one TopicServer to function as a sub-
scriber to another TopicServer.

10.10 Acquire an access control key for GoogleSearch from Google and download
the software associated with the J2EE 1.4 Tutorial. After working through the
JAX-RPC portion of the tutorial, modify one of the example clients so that it
gets a spelling suggestion from GoogleSearch instead of accessing the exam-
ple Hello web service. You can use http://api.google.com/search/beta2 as the end-
point address and http://api.google.com/GoogleSearch.wsdl as the WSDL location.
Optionally, you can use a packet capture program such as ethereal to verify
that the web service is being accessed through ordinary HTTP, without the use
of SSL, and that the SOAP messages are essentially as shown in Figures 10.13
and 10.14.

¢ Exploration Projects

10.1 Read about message-driven beans in the J2EE 1.4 Tutorial and write a concise
explanation of what they are and why they are more convenient than directly
using JMS.

10.2 Work through the examples in Chapters 28 and 33 of the J2EE 1.4 Tutorial, “A
Message-Driven Bean Example” and “The Java Message Service APL.”

Notes

The topics in this chapter are subject to particularly rapid technical developments. As
such, your best source of information is likely to be the web sites. The Java web site,
http://java.sun.com, has information both on RMI and on J2EE, which includes JMS and
JAX-RPC. The Web Services Activity web site, http://w3c.org/2002/ws/, has information
on WSDL, SOAP, and web services in general. Other important sites for web services
standards are the Web Services Interoperability Organization, http://www.ws-i.org/, and
OASIS, http://www.oasis-open.org/, which tends to have more specialized, advanced stan-
dards. The information on these sites—and in many published books for that matter—
tends to emphasize the technical details over the big picture of how to use the tech-
nology. One book that does provide a lot of big-picture advice on the use of messaging
is by Hohpe and Woolf [70].

