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CHAPTER

Files and Other
Persistent Storage

8.1 Introduction

In this chapter, you will study two different kinds of service, each of which can be
provided by either an operating system or middleware, and each of which can take
several different forms. Persistence services provide for the retention of data for periods
of time that are long enough to include system crashes, power failures, and similar dis-
ruptions. Access services provide application programs the means to operate on objects
that are identified by name or by other attributes, such as a portion of the contents. In
principle, these two kinds of service are independent of one another: persistent objects
can be identified by numeric address rather than by name, and naming can be applied
to non-persistent objects. However, persistence and access services are often provided
in concert, as with named files stored on disk. Therefore, I am addressing both in a
single chapter.

Any kind of object that stores data can be persistent, whether the object is as simple
as a sequence of bytes or as complex as an application-specific object, such as the repre-
sentation of a retirement portfolio in a benefits management system. In contemporary
mainstream systems, the three most common forms of persistent storage are as follows:

e A file, which is an array of bytes that can be modified in length, as well as read
and written at any numerically specified position. (Historically, the word has had
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other meanings, but this definition has become dominant.) File storage is nor-
mally provided by operating systems and will serve as my primary example in this
chapter.

A table, which in a relational database system is a multiset of rows (also known
as tuples or records). Each row provides an appropriately typed value for each of
the table’s columns. For example, a table of chapters might have a title column,
which holds character strings, and a number column, which holds integers. Then
an individual row within that table might contain the title "Files and Other
Persistent Storage" and the number 8. Database storage is normally provided
by middleware, rather than by an operating system.

A persistent object, which is an application-specific object of the sort associated
with object-oriented programming languages. For example, Java objects can be
made persistent. Persistent objects are normally supported by middleware using
one of the previous two types of persistent storage. Unfortunately, there are many
competing approaches to supporting persistent objects; even the Java API does not
yet have a single standardized approach. Therefore, I will not discuss persistent
objects any further.

Access services can also take a variety of forms, from a single directory of unique

names to the sort of sophisticated full-text search familiar from the web. I will con-
centrate on two access options that are popular in operating systems and middleware:

e Hierarchical directories map names into objects, each of which can be a subdirec-

tory, thereby forming a tree of directories (or nested file folders). In some variants,
objects can be accessible through multiple names, either directly (multiple names
refer to one object) or indirectly (one name refers to another name, which refers
to an object). Operating systems generally use hierarchical directories to provide
access to files.

e Indexes provide access to those objects that contain specified data. For example,

an index on a table of orders could be used to find those rows that describe orders
placed by a particular customer. Relational database middleware commonly uses
indexes to provide access to rows. Files can also be indexed for fast searching.

The design of persistent storage mechanisms is influenced not only by the ser-

vice being provided, but also by the underlying hardware technology. For many years
the dominant technology has been moving-head magnetic disk drives; most experts
expect this dominance to continue for years to come. Therefore, Section 8.2 summa-
rizes the key performance characteristics of disk drives; this summary serves as back-
ground for the design decisions explained in the remainder of the chapter.
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Then, in Section 8.3, I will present an external view of a persistence service, looking
at the file operations made available by POSIX operating systems. This material is of
practical value (you are more likely to use a file system than to design one) and serves
to motivate the examination of file system design in subsequent sections. Only once
you understand what requirements a persistence service needs to meet will it make
sense to consider the internal mechanisms it uses to do so.

Moving into the underlying mechanisms for persistence, Sections 8.4 and 8.5
examine the techniques used to allocate disk space and the metadata used to pack-
age the allocated space into usable objects. For simplicity, these two sections make
reference only to file systems. However, the techniques used to provide space for a
database table are fundamentally no different than for a file.

Next, [ turn in Section 8.6 to the primary mechanisms for locating data: directories
and indexes. Initially, I explain how these mechanisms are used in the traditional
context of file directories and database indexes, and I point out that they are variations
on the common theme of providing access through search keys. I then give a brief
example of how these mechanisms can be merged to provide index-based file access.
Before leaving the high-level view of access services, I explain one topic of particular
interest to system administrators and application programmers: the ways in which
multiple names can refer to the same file. Moving into the internals, I then present
the data structures commonly used to store the directories or indexes for efficient
access.

Persistent storage needs to retain its integrity in the face of system crashes. For
example, no disk space should ever be both assigned to a file and marked as free for
other use, even if the system crashed just as the space was being allocated. Similar
properties are needed for directories and indexes; if a crash occurs while a file is being
renamed, the file should have either its old name or its new name, but not both or
neither. Because Chapter 5 covered the use of logs to provide durable atomic transac-
tions, you have already seen the primary mechanism used to ensure integrity in con-
temporary persistent storage systems. Nonetheless, I devote Section 8.7 to the topic of
metadata integrity so that I can sketch the alternative approaches to this problem.

Many operating systems allow file systems of varying designs to be mixed together.
A Linux system might use one disk partition to store a Linux-specific file system, while
another partition holds a file system designed for Microsoft Windows or Mac OS X.
This mixing of file systems provides a valuable case study of polymorphism, that is, the
use of multiple implementations for a common interface. I devote Section 8.8 to this
topic.

Finally, I give some attention to security issues in Section 8.9 before closing with
the usual selection of exercises, projects, and bibliographic notes.
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8.2 Disk Storage Technology

A disk drive stores fixed-sized blocks of data known as sectors; a typical sector size is
512 bytes. The interface between a contemporary disk drive and a computer is con-
ceptually quite simple, essentially just a large array of sectors. Just like in any array,
the sectors are consecutively numbered, from O up to a maximum that depends on the
capacity of the drive. The computer can ask the disk controller to perform two basic
operations:

e The computer can request that the controller write data from a specified physical
address in the main memory (RAM) to a specified sector number on the disk. For
reasons you will see in the remainder of this section, the write request can also
specify a number of consecutive sectors to be transferred.

e The computer can request that the controller read data from a specified sector num-
ber to a specified physical address in the main memory. Again, the read request
can specify that multiple consecutive sectors be transferred.

This view of the disk drive as one large array of sectors suffices for writing correct
software, but not for writing software that performs well. Because some disk accesses
involve far more mechanical movement than others, the access time can vary substan-
tially. In particular, contemporary disk drives can sustain data transfer rates measured
in tens of megabytes per second if accessed optimally, but only tens of kilobytes per
second if accessed randomly. To understand what the software needs to do to avoid
this performance penalty of three orders of magnitude, it helps to look inside the black
box at the internal structure of a disk drive, as in Figure 8.1.

A disk drive contains a stack of platters mounted on a common spindle and spin-
ning at a fixed rotational speed, such as 10,000 revolutions per minute. Data is recorded
onto the surface of the platters and read back off using heads, one recording and play-
back head per surface. The heads are supported by an arm that can pivot so as to
position the heads nearer or further from the central spindle; Figure 8.1 shows the
relationship between the platters, the spindle, and the head arm. If the arm is left
in a fixed position, the rotation of the disks causes a circular region of each disk sur-
face to pass under the corresponding head. This circular region of a single disk surface
is known as a track; each track is divided into hundreds of sectors. The collection of
tracks, one per disk surface, accessible at a particular position of the head arm is called
a cylinder.

Only one head can be active at any time. Depending on which head is active and
the position of the head arm, a single track’s worth of sectors can be read or written. In
order to access more data than can fit in a single track, there are two options. A head
switch changes the active head and thereby provides access to another track in the
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Figure 8.1 In this photo of an opened disk drive, a stack of four platters is visible at the top, with
a head arm extending into the platter area. The part you can see is the topmost layer of the head
arm, holding the head for the top surface of the top platter. Similar layers are stacked below it; for
example, the next layer down has heads for the bottom of the top platter and the top of the second
platter. Photo copyright by and reprinted by courtesy of Seagate Technology LLC.

same cylinder. A seek moves the arm to a position closer or further from the spindle
in order to provide access to another cylinder. As it happens, the head switch time on
a modern drive is quite similar to the time needed to seek to an adjacent cylinder—a
fraction of a millisecond—so the distinction is not important; henceforth, I'll talk only
about seeking.

The seek time is larger for tracks that are further apart, but not proportionately
so, for some of the same reasons as the duration of an automobile trip is not propor-
tional to its distance. Just as an automobile needs to accelerate at the beginning of
a trip, decelerate at the end of the trip, and then painstakingly pull into a parking
spot, so too a disk arm needs to accelerate, decelerate, and home in on the exact posi-
tion of the destination track. The net result of this is that seeking to a track tens of
thousands of cylinders away may take 5 milliseconds, only ten times as long as seek-
ing to an adjoining track. Seeking to an adjoining track already takes long enough
that tens of kilobytes of data could have been transferred were the drive not busy
seeking.
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Even the ten-fold speed ratio between short and long seeks is misleading, however,
because accessing a sector involves more than just seeking to that sector’s track. Once
the appropriate track is spinning under the active head, the disk controller needs to
wait for the appropriate sector to come around to the head’s position, a delay known
as rotational latency. Because the time a disk takes to complete one revolution is com-
parable to the time taken to seek across tens of thousands of cylinders, the rotational
latency can bring the total access time for a random sector on an adjoining track to
within a small factor of the access time for a sector on a distant track.

Once an access is underway, additional sectors can be read or written at high speed
as they pass under the head assembly. Even a request for multiple sectors that happens
to cross a track boundary will pay only the penalty of seek time and not the larger
penalty of rotational latency, because the first sector of the track is positioned so that
it passes under the head just after the seek completes.

If the software accesses a large number of consecutive sectors, there are two advan-
tages for doing so in a single large request rather than several smaller requests. One
advantage is reduced overhead in the interface between computer and disk. The other
difference, which is more significant, is that issuing separate requests may cost addi-
tional disk revolutions, particularly for writes; missing the timing for a sector means
waiting a full revolution for it to come around again. (Reads are less of a problem
because disk drives contain on-board RAM, known as cache buffers, to hold data that
has passed under the active head, so that it can be accessed without waiting for it to
come around again. Disks can use the cache buffers for writes as well, but only if the
software is designed to tolerate some loss of recently written data upon system crash.)

Thus, the secrets to attaining a disk drive’s full potential are locality, locality, and
locality:

e Accessing a sector with a similar identifying number to the most recently accessed
one will generally be faster than accessing a sector with a greatly different number.

e Accessing consecutive sectors will generally be faster than accessing sectors that
have even small differences in their sector numbers.

e Accessing consecutive sectors in one large request will be faster than accessing
them in several smaller requests.

You should keep these performance issues related to locality in mind when considering
topics such as how disk space is allocated.

There is one other performance issue, less directly related to locality, which I will
only briefly mention here. (Seeing how it influences software design would be interest-
ing, but beyond the level of this book.) The software should not wait for the disk drive
to complete each request before issuing the next request, which may be from a differ-
ent thread. Disk drives are capable of queuing up multiple requests and then handling



hailperin-163001

book October 18, 2005 11:22

8.3 POSIX File API <« 275

them in whichever order best utilizes the mechanical components. For example, if
several accesses to the same track are queued, the disk drive can perform them in the
order the sectors happen to pass under the head.

Throughout this chapter, I will focus on systems that employ a single disk drive, for
the sake of simplicity. Using multiple drives to divide or replicate data raises interesting
trade-offs of reliability and performance; the notes section at the end of the chapter
suggests some readings if you want to explore this area.

8.3 POSIX File API

All UNIX-like systems (including Linux and Mac OS X) support a rather complicated
set of procedures for operating on files, which has evolved over the decades, eventually
becoming part of the POSIX standard. For most everyday purposes, programmers can
and should ignore this API, instead using one of the cleaner, higher-level APIs built
on top of it, such as those included in the Java and C++ standards. Nonetheless,
I will introduce the POSIX API here, because in many important systems, it forms
the interface between the operating system kernel and software running in user-level
application processes, even if the latter is encapsulated in libraries.

8.3.1 File Descriptors

Files are referred to in two different ways: by character-string pathnames (such as
microshell.c or /etc/passwd) and by integer file descriptors (such as 0, 1, or 17).
A pathname is a name of a file, optionally including a sequence of directories used to
reach it. A file descriptor, on the other hand, provides no information about the file’s
name or location; it is just a featureless integer.

Many operations require file descriptors; in particular, to read data from a file or
write data into a file requires a file descriptor. If a process happens to have inherited a
file descriptor when it was forked from its parent (or happens to have received the file
descriptor in a message from another process), then it can read or write the file with-
out ever knowing a name for it. Otherwise, the process can use the open procedure to
obtain a file descriptor for a named file. When the process is done with the file descrip-
tor, it can close it. (When a process terminates, the operating system automatically
closes any remaining open file descriptors.)

File descriptors can refer not only to open files, but also to other sources and des-
tinations for input and output, such as the keyboard and the display screen. Some
procedures will work only for regular files, whereas others work equally well for hard-
ware devices, network communication ports, and so forth. [ will flag some places these
distinctions matter; however, my primary focus will be on regular files, stored on disk.
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By convention, all processes inherit at least three file descriptors from their parent.
These file descriptors, known as the standard input, standard output, and standard error
output, are numbered 0, 1, and 2, respectively. Rather than remembering the numbers,
you should use the symbolic names defined in unistd.h, namely, STDIN_FILENO,
STDOUT_FILENO, and STDERR_FILENO.

When you run a program from a shell and don’t make special arrangements, stan-
dard input generally is your keyboard, while the standard output and error output are
both directed to the shell’s window on your display screen. You can redirect the stan-
dard input or output to a file by using the shell’s < and > notations. For example, the
shell command

ps 1 >my-processes

runs the ps program with the 1 option to generate a list of processes, as you saw in
Chapter 7. However, rather than displaying the list on your screen, this command
puts the list into a file called my-processes. The ps program doesn’t need to know
anything about this change; it writes its output to the standard output in either case.
Only the shell needs to do something different, namely, closing the preexisting stan-
dard output and opening the file in its place before executing the ps program. If the
ps program has any error messages to report, it outputs them to the standard error
output, which remains connected to your display screen. That way, the error messages
aren’t hidden in the my-processes file.

Figure 8.2 contains a program illustrating how the shell would operate in the pre-
ceding example, with a child process closing its inherited standard output and then
opening my-processes before executing ps. The most complicated procedure call
is the one to open. The first argument is the name of the file to open. Because this
character string does not contain any slash characters (/), the file is found in the
process’s current directory. (Every process has a current working directory, which can
be changed using the chdir procedure.) If the name contained one or more slashes,
such as alpha/beta/gamma Or /etc/passwd, then the operating system would tra-
verse one or more directories to find the file to open. In particular, alpha/beta/gamma
would start with the current directory, look for the subdirectory alpha, look in alpha
for beta, and finally look in beta for the file gamma. Because /etc/passwd starts
with a slash, the search for this file would begin by looking in the root directory for
etc and then in that directory for passwd. In Section 8.6, I will discuss file naming
turther, including related aspects of the POSIX API, such as how a file can be given an
additional name or have a name removed.

The second argument to open specifies the particular way in which the file should
be opened. Here, the 0_WRONLY indicates the file should be opened for writing only
(as opposed to O_RDONLY or O_RDWR), the 0_CREAT indicates that the file should be
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#include <unistd.h>
#include <stdio.h>
#include <iostream>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/stat.h>
using namespace std;

int main() {
pid_t returnedvalue = fork():;
if (returnedvalue < 0) {

perror ("error forking");
return -1;
else if (returnedvalue == 0){
if (close (STDOUT_ _FILENO) < 0) {
perror ("error closing standard output");
return -1;
}
// When there is no error, open returns the smallest file
// descriptor not already in use by this process, so having
// closed STDOUT_FILENO, the open should reuse that number.
if (open("my-processes", O WRONLY | O CREAT | O_TRUNC,
S_TIRUSR | S_IWUSR) < 0){
perror ("error opening my-processes");
return -1;
}
execlp("ps", "ps", "1", NULL); // ps with option letter 1
perror ("error executing ps");
return -1;
else {
if (waitpid(returnedvalue, 0, 0) < 0){
perror ("error waiting for child");
return -1;
}
cout << "Note the parent still has the o0ld standard output."
<< endl;

Figure 8.2 This C++ program, file-processes.cpp, illustrates how the shell runs the com-
mand ps 1 >my-processes. After forking, the child process closes the inherited standard out-
put and in its place opens my-processes before executing ps.
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created if it doesn’t already exist (rather than signaling an error), and the 0_TRUNC
indicates that the file should be truncated to zero length before writing; that is, all
the old data (if any) should be thrown out. Because the 0_CREAT option is specified,
the third argument to open is needed; it specifies the access permissions that should
be given to the file, if it is created. In this case, the access permissions are read and
write for the owning user only, that is, rw------- .

Even setting aside open and close, not all operations on files involve reading or
writing the contents of the file. Some operate on the metadata attributes—attributes
describing a file—such as the access permissions, time of last modification, or owner.
A variety of procedures, such as chmod, utime, and chown, allow these attributes to
be set; I won't detail them. I will, however, illustrate one procedure that allows the
attributes of a file to be retrieved. The C++ program in Figure 8.3 uses the fstat
procedure to retrieve information about its standard input. It then reports just a few

#include <unistd.h>
#include <time.h>
#include <sys/stat.h>
#include <stdio.h>
#include <iostream>
using namespace std;

int main() {
struct stat info;
if (f£fstat (STDIN_FILENO, &info) < 0){
perror ("Error getting info about standard input");
return -1;
}
cout << "Standard input is owned by user number "
<< info.st_uid << endl;
cout << "and was last modified " << ctime(&info.st_mtime);
if (S_ISREG(info.st_mode)) {
cout << "It is a " << info.st_size << "-byte file." << endl;
} else {
cout << "It is not a regular file." << endl;
}

return 0;

Figure 8.3 This C++ program, £stater.cpp, describes its standard input, using information
retrieved using £stat. That information includes the owner, last modification time, and whether the
standard input is from a regular file. In the latter case, the size of the file is also available.
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of the attributes from the larger package of information. After printing the owner and
modification time stamp, the program checks whether the standard input is from a
regular file, as it would be if the shell were told to redirect standard input, using <.
Only in this case does the program print out the file’s size, because the concept of
size doesn’t make any sense for the stream of input coming from the keyboard, for
example. If this program is compiled in a file called £stater, then the shell command

./fstater </etc/passwd

would give you information about the /etc/passwad file, which you could verify using
the command 1s -1n /etc/passwd.

Moving on to actually reading or writing the contents of a file, the low-level POSIX
API provides three different choices. A file (or a portion thereof) can be mapped into
the process’s address space using the mmap procedure, allowing normal memory loads
and stores to do the reading and writing. Alternatively, the file can be left outside
the address space, and individual portions explicitly read or written using procedures
that copy from the file into memory or from memory into the file. One version of
these procedures (pread and pwrite) needs to be told what position within the file to
read or write, whereas the other version (read and write) operates sequentially, with
each operation implicitly using the portion of the file immediately after the preceding
operation. I'll discuss all three possibilities at least briefly, because each has its virtues.
Because mmap is the simplest procedure, I will start with it.

8.3.2 Mapping Files into Virtual Memory

The use of mmap is illustrated by the C++ program in Figures 8.4 and 8.5, which copies
the contents of one file to another. The program expects to be given the names of the
input and output files as argv[1] and argv[2], respectively. It uses the open proce-
dure to translate these into integer file descriptors, £4_in and £d_out. By using fstat
(as in Figure 8.3), it finds the size of the input file. This size (info.st_size) plays three
roles. One is that the program makes the output file the same size, using ftruncate.
(Despite its name, ftruncate does not necessarily make a file shorter; it sets the file’s
size, whether by truncating it or by padding it out with zero bytes.) Another use of the
input file’s size is for the two calls to mmap, which map the input and output files into
virtual memory, with read-only and write-only protections, respectively. The returned
values, addr_in and addr_out, are the virtual addresses at which the two files start
in the process’s address space. The third use of the input file size is to tell the library
procedure memcpy how many bytes to copy from addr_in to addr_out. The memcpy
procedure is a loop that executes load and store instructions to copy from one place in
virtual memory to another. (This loop could be written explicitly in C++, but would
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#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;

int main(int argc, char *argv[]){
if(argc != 3){
cerr << "Usage: " << argv[0] << " infile outfile" << endl;
return -1;
}
int £4_in = open(argv[1l], O_RDONLY) ;
if(£4_in < 0){
perror (argv[l]):;
return -1;
}
struct stat info;
if (fstat(fd_in, &info) < 0){
perror ("Error stating input file");
return -1;
}
void *addr_in =
mmap (0, info.st_size, PROT_READ, MAP SHARED, f£d_in, 0);
if (addr_in == MAP_FAILED) {
perror ("Error mapping input file");
return -1;

Figure 8.4 This is the first portion of cpmm. cpp, a C++ program using virtual memory mapping
to copy a file. The program is continued in the next figure.

be less clear and likely less efficient as well, because the library routine is very carefully
tuned for speed.)

Of course, I haven’t explained all the arguments to mmap, or many other details. My
intent here is not to provide comprehensive documentation for these API procedures,
nor to provide a complete tutorial. Instead, the example should suffice to give you
some feel for file I/O using mmap; files are opened, then mapped into the virtual address
space, and then accessed as any other memory would be, for example, using memcpy.

The underlying idea behind virtual memory-based file access (using mmap) is that
files are arrays of bytes, just like regions of virtual address space; thus, file access can be
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int £4_out =
open(argv[2], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR):;
if (£d_out < 0){
perror (argvi[2]):;
return -1;
}
if (ftruncate(fd_out, info.st_size) < 0){
perror ("Error setting output file size");
return -1;
}
void *addr_out =
mmap (0, info.st_size, PROT_WRITE, MAP_SHARED, fd_out, 0);
if (addr_out == MAP_ FAILED) {
perror ("Error mapping output file");
return -1;
}
memcpy (addr_out, addr_in, info.st_size);
return 0;

Figure 8.5 This is the second portion of cpmm. cpp, a C++ program using virtual memory map-
ping to copy a file. The program is continued from the previous figure.

treated as virtual memory access. The next style of file I/O to consider accepts half of
this argument (that files are arrays of bytes) but rejects the other half (that they should
therefore be treated the same as memory). In Section 8.3.4, you will see a third style
of 1/0, which largely rejects even the first premise.

8.3.3 Reading and Writing Files at Specified Positions

Although convenient, accessing files as virtual memory is not without disadvantages.
In particular, writing files using mmap raises two problems:

e The process has no easy way to control the time at which its updates are made
persistent. Specifically, there is no simple way for the process to ensure that a data
structure is written to disk only after it is in a consistent state, rather than in the
middle of a series of related updates.

e A process can write a file only if it has read permission as well as write permission,

because all page faults implicitly read from the file, even if the page faults occur
in the course of writing data into the file’s portion of virtual memory.

For these and other reasons, some programmers prefer to leave files separate from the
virtual memory address space and use procedures in the POSIX API that explicitly
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copy data from a file into memory or from memory into a file. The pread and pwrite
procedures take as arguments a file descriptor, a virtual address in memory, a number
of bytes to copy, and a position within the file. Each procedure copies bytes starting
from the specified position in the file and the specified address in memory—pread
from the file to the memory and pwrite from the memory to the file. These proce-
dures are somewhat tricky to use correctly, because they may copy fewer bytes than
requested, and because they may signal error conditions that go away upon retrying
the operation. Therefore, they always need to be put in carefully designed loops. For
this reason, I will not devote space to an example here.

8.3.4 Sequential Reading and Writing

Both mmap and the pread/pwrite pair rely on the ability to access arbitrary positions
within a file; that is, they treat the file as an array of bytes. As such, neither interface
will work for other sources of input and destinations for output, such as keyboards
and network connections. Instead, one needs to use a sequential style of I/O, where
each read or write operation takes place not at a specified position, but wherever the
last one left off.

Sequential I/O is also quite convenient for many purposes, even when used with
files. For example, suppose you give the following command in a shell:

(ls; ps) > information

This opens the file named information for writing as the standard output and then
runs two programs in succession: 1s to list the files in the current directory and ps to
list processes. The net result is that information contains both listings, one after the
other. The ps command does not need to take any special steps to direct its output
to the position in the file immediately after where 1s stopped. Instead, by using the
sequential I/O features of the POSIX AP]I, each of the two processes naturally winds up
writing each byte of output to the position after the previously written byte, whether
that previous byte was written by the same process or not.

A process can perform sequential I/O using the read and write procedures, which
are identical to pread and pwrite, except that they do not take an argument speci-
fying the position within the file. Instead, each implicitly is directed to read or write
at the current file offset and to update that file offset. The file offset is a position for
reading and writing that is maintained by the operating system.

For special files such as keyboard input, sequential input is intrinsic, without need-
ing an explicit file offset. For regular files stored on disk, however, the file offset is a
numeric position within the file (of the same kind pread and pwrite take as
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arguments) that the operating system keeps track of behind the scenes. Whenever
a file is opened, the operating system creates an open file description, a capability-like
structure that includes the file offset, normally initialized to 0. Any file descriptors
descended from that same call to open share the same open file description. For exam-
ple, in the previous example of 1s and ps writing to the information file, each of
the two processes has its own file descriptor, but they are referring to the same open
file description, and hence share the same file offset. If a process independently calls
open on the same file, however, it will get a separate file offset.

A process implicitly increases the file offset whenever it does a read or write
of more than zero bytes. It can also explicitly change the file offset using the 1seek
procedure. The 1seek procedure can set the file offset anywhere within the file (for
a regular disk file). As such, a process can use the combination of 1seek and read
or write to simulate pread or pwrite. However, this simulation is prone to races
if multiple threads or processes share the same open file description, unless they use
some synchronization mechanism, such as a mutex.

Normally 1seek is used only infrequently, with sequential access predominating.
For example, a process may read a whole file sequentially, using read, and then use
lseek to set it back to the beginning to read a second time. The conceptual model is
based on a tape drive, where ordinary reads and writes progress sequentially through
the tape, but rewinding or skipping forward is also possible.

The read and write procedures share the same difficulty as pread and pwrite:
the necessity of looping until all bytes have been transferred. It is much easier to use
the I/0O facilities defined in the standard libraries for higher level programming lan-
guages, such as Java or C++. Behind the scenes, these libraries are using read and
write and doing the looping (and other details) for you.

8.4 Disk Space Allocation

A file system is analogous to a virtual memory system, in that each uses a level of
indirection to map objects into storage locations. In virtual memory, the mapping
is from virtual addresses within address spaces to physical addresses within memory.
In a file system, the mapping is from positions within files to locations on disk. For
efficiency, the mapping is done at a coarse granularity, several kilobytes at a time. In
virtual memory, each page is mapped into a page frame; in a file system, each block of a
file is mapped into a disk block. (You will see that blocks are typically several kilobytes
in size, spanning multiple sectors.)

When discussing virtual memory, I remarked that the operating system was free
to assign any unused page frame of physical memory to hold each page of virtual
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memory. However, although any allocation policy would be correct, some might cause
cache memory to perform better.

Persistent storage faces a similar allocation problem, but the performance issues
are considerably more pronounced. A file system has the freedom to store data in
any otherwise unused disk block. The choices it makes determine how accesses to files
translate into accesses to disk. You have already seen that the pattern of disk access can
make a huge performance difference (three orders of magnitude). Thus, I will examine
allocation policies here more closely than I examined placement policies in Chapter 6.

Before I get into allocation policies themselves and their embodiment in allocation
mechanisms, I will look at the key objectives for allocation: minimizing wasted space
and time. As you will see in Sections 8.4.1 and 8.4.2, these goals can be expressed as
minimizing fragmentation and maximizing locality.

8.4.1 Fragmentation

The word fragmentation is used in two different senses. First, consider the definition
I will not be using. For some authors, fragmentation refers to the degree to which a
file is stored in multiple noncontiguous regions of the disk. A file that is stored in a
single contiguous sequence of disk blocks (called an extent) is not fragmented at all,
by this definition. A file stored in two separate extents would be slightly fragmented.
If the file’s blocks are individually scattered across the disk, then the file is maximally
fragmented, by this definition. A defragmentation program moves files’ blocks around
on disk so as to leave each file in a single extent. To allow future allocations to be
non-fragmented, the defragmentation program also arranges the files so that the free
space on the disk is clustered together.

The contiguity and sequentiality issues mentioned in the preceding paragraph are
important for speed of access; I will discuss them in Section 8.4.2 under the broader
heading of locality. However, I will not refer to them as fragmentation, because I will
use another definition that is well established in the operating systems field. By this
alternative definition, fragmentation concerns space efficiency. A highly fragmented
disk is one in which a large proportion of the storage capacity is unavailable for allo-
cation to files. I will explain in the remainder of this subsection the phenomena that
cause space to be unusable.

One source of waste is that space is allocated only in integer multiples of some file
system block size. For example, a file system might allocate space only in units of 4 KB.
A file that is too big to fit in a single 4-KB unit will be allocated 8 KB of space—even if
it is only a single byte larger than 4 KB. The unused space in the last file block is called
internal fragmentation. The amount of internal fragmentation depends not only on the
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desired file sizes, but also on the file system block size. As an analogy, consider parallel
parking in an area where individual parking spaces are marked with painted lines, and
where drivers actually respect those lines. The amount of wasted space depends on the
cars being parked, but it also depends on how far apart the lines are painted. Larger
parking spaces will generally result in more wasted space.

The file system block size is always some multiple of the underlying disk drive’s
sector size; no file system ever subdivides the space within a single disk sector. Gener-
ally, the file system blocks span several consecutive disk sectors; for example, eight disk
sectors of 512 bytes each might be grouped into each 4-KB file system block. Larger
file system blocks cause more internal fragmentation, but are advantageous from other
perspectives. In particular, you will see that a larger block size tends to reduce external
fragmentation. Additionally, a larger block size implies that there are fewer blocks to
keep track of, which reduces bookkeeping overhead.

Once a space allocation request has been rounded up to the next multiple of the
block size, the operating system must locate the appropriate number of unused blocks.
In order to read or write the file as quickly as possible, the blocks should be in a single
consecutive extent. For the moment, I will consider this to be an absolute requirement.
Later, I will consider relaxing it.

Continuing with my earlier example, suppose you need space for a file that is just
one byte larger than 4 KB and hence has been rounded up to two 4-KB blocks. The
new requirement of contiguity means that you are looking for somewhere on the disk
where two consecutive 4-KB blocks are free. Perhaps you are out of luck. Maybe the disk
is only half full, but the half that is full consists of every even-numbered file system
block with all the odd-numbered ones available for use. This situation, where there is
lots of space available but not enough grouped together in any one place, is external
fragmentation. So long as you insist on contiguous allocation, external fragmentation
is another cause of wasted space: blocks that are free for use, but are too scattered to
be usable.

On the surface, it appears that external fragmentation would result only from very
strange circumstances. My example, in which every second file system block is occu-
pied, would certainly fit that description. To start with, it implies that you allocated
lots of small files and now suddenly want to allocate a larger file. Second, it implies
that you either were really dumb in choosing where those small files went (skipping
every other block), or had phenomenally bad luck in the user’s choice of which files
to delete.

However, external fragmentation can occur from much more plausible circum-
stances. In particular, you can wind up with only small gaps of space available even if
all the allocations have been for much larger amounts of space and even if the previous
allocations were done without leaving silly gaps for no reason.
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For a small scenario that illustrates the phenomenon, consider a disk that has room
for only 14 file system blocks. Suppose you start by allocating three four-block files. At
this point, the space allocation might look as follows:

filel file2 file3

0 4 8 12 14

Suppose file2 is now deleted, resulting in a four-block gap, with another two blocks
free at the end of the disk:

filel file3

0 4 8 12 14

If, at this point, a three-block file (file4) is created, it can go into the four-block gap,
leaving one block unused:

filel file4 file3

0 4 7 8 12 14

Now there are three unused blocks, but there is no way to satisfy another three-block
allocation request, because the three unused blocks are broken up, with one block
between files 4 and 3, and two more blocks at the end of the disk.

Notice that you wound up with a one-block gap not because a one-block file was
created and later deleted (or because of stupid allocation), but because a four-block file
was replaced by a three-block file. The resulting gap is the difference in the file sizes.
This means that even if a disk is used exclusively for storing large files, it may still
wind up with small gaps, which cannot hold any large files. This is the fundamental
problem of external fragmentation.

Returning to the parallel parking analogy, consider an area where no parking spaces
are marked on the pavement, leaving drivers to allocate their own spaces. Even if they
are courteous enough not to leave any pointless gaps, small gaps will arise as cars of
varying sizes come and go. A large car may vacate a space, which is then taken by a
smaller car. The result is a gap equal to the difference in car sizes, too small for even
the smallest cars to use. If this situation happens repeatedly at different spots along a
block, there may be enough total wasted space to accommodate a car, but not all in
one place.

Earlier, I mentioned that increasing the file system block size, which increases
internal fragmentation, decreases external fragmentation. The reason for this is that



hailperin-163001

book October 18, 2005 11:22

8.4 Disk Space Allocation <« 287

with a larger block size, there is less variability in the amount of space being allocated.
Files that might have different sizes when rounded up to the next kilobyte (say, 14 KB
and 15 KB) may have the same size when rounded to the next multiple of 4 KB (in
this case, 16 KB and 16 KB). Reduced variability reduces external fragmentation; in the
extreme case, no external fragmentation at all occurs if the files are all allocated the
same amount of space.

Suppose you relax the requirement that a file be allocated a single extent of the
disk. Using file metadata, it is possible to store different blocks of the file in different
locations, much as a virtual memory address space can be scattered throughout phys-
ical memory. Does this mean that external fragmentation is a nonissue? No, because
for performance reasons, you will still want to allocate the file contiguously as much
as possible. Therefore, external fragmentation will simply change from being a space-
efficiency issue (free space that cannot be used) to a time-efficiency issue (free space
that cannot be used without file access becoming slower). This gets us into the next
topic, locality.

8.4.2 Locality

Recall that disks provide their fastest performance when asked to access a large number
of consecutive sectors in a single request at a location nearby to the previous access
request. Most file system designers have interpreted these conditions for fast access as
implying the following locality guidelines for space allocation:

1. The space allocated for each file should be broken into as few extents as possible.

2. If a file needs to be allocated more than one extent, each extent should be nearby
to the previous one.

3. Files that are commonly used in close succession (or concurrently) should be placed
near one another.

The connection between fast access and these three guidelines is based on an
implicit assumption that the computer system’s workload largely consists of accessing
one file at a time and reading or writing each file in its entirety, from beginning to end.
In many cases, this is a reasonable approximation to the truth, and so the preceding
locality guidelines do result in good performance. However, it is important to remem-
ber that the guidelines incorporate an assumption about the workload as well as the
disk performance characteristics. For some workloads, a different allocation strategy
may be appropriate.

As an example of a different allocation strategy that might make sense, Rosenblum
and Ousterhout suggested that blocks should be allocated space on disk in the order
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they are written, without regard to what files they belong to or what positions they
occupy within those files. By issuing a large number of consecutive writes to the disk
in a single operation, this allows top performance for writing. Even if the application
software is concurrently writing to multiple files, and doing so at random positions
within those files, the write operations issued to disk will be optimal, unlike with the
more conventional file layout. Of course, read accesses will be efficient only if they
are performed in the same order as the writes were. Fortunately, some workloads do
perform reads in the same order as writes, and some other workloads do not need effi-
cient read access. In particular, the efficiency of read access is not critical in a workload
that reads most disk blocks either never or repeatedly. Those blocks that are never read
are not a problem, and those that are read repeatedly need only suffer the cost of disk
access time once and can thereafter be kept in RAM.

Returning to the more mainstream strategy listed at the beginning of this subsec-
tion, the primary open question is how to identify files that are likely to be accessed
contemporaneously, so as to place them nearby to one another on disk. One approach,
used in UNIX file systems, is to assume that files are commonly accessed in conjunction
with their parent directory or with other (sibling) files in the same directory. Another
approach is to not base the file placement on assumptions, but rather on observed
behavior. (One assumption remains: that future behavior will be like past behavior.)
For example, Microsoft introduced a feature into Windows with the XP version, in
which the system observes the order of file accesses at system boot time and also at
application startup time, and then reorganizes the disk space allocation based on those
observed access orders. Mac OS X does something similar as of version 10.3: it mea-
sures which files are heavily used and groups them together.

8.4.3 Allocation Policies and Mechanisms

Having seen the considerations influencing disk space allocation (fragmentation and
locality), you are now in a better position to appreciate the specific allocation mecha-
nism used by any particular file system and the policy choices embodied in that mech-
anism. The full range of alternatives found in different file systems is too broad to
consider in any detail here, but I will sketch some representative options.

Each file system has some way of keeping track of which disk blocks are in use and
which are free to be allocated. The most common representation for this information
is a bitmap, that is, an array of bits, one per disk block, with bit i indicating whether
block i is in use. With a bitmap, it is easy to look for space in one particular region of
the disk, but slow to search an entire large disk for a desired size extent of free space.

Many UNIX and Linux file systems use a slight variant on the bitmap approach.
Linux’s ext3fs file system can serve as an example. The overall disk space is divided
into modest-sized chunks known as block groups. On a system with 4-KB disk blocks,
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a block group might encompass 128 MB. Each block group has its own bitmap, indi-
cating which blocks within that group are free. (In Exercise 8.8, you can show that
in the example given, each block group’s bitmap fits within a single block.) Summary
information for the file system as a whole indicates how much free space each block
group has, but not the specific location of the free space within the block groups.
Thus, allocation can be done in two steps: first find a suitable block group using the
summary information, and then find a suitable collection of blocks within the block
group, using its bitmap.

I remarked earlier that UNIX and Linux file systems generally try to allocate each
file near its parent directory. In particular, regular files are placed in the same block
group as the parent directory, provided that there is any space in that group. If this
rule were also followed for subdirectories, the result would be an attempt to cram the
entire file system into one block group. Therefore, these file systems use an alternative
rule to choose a block group for a subdirectory.

When creating a subdirectory, early versions of ext3fs and similar file systems
selected a block group containing a lot of free space. This spread the directories, with
their corresponding files, relatively evenly through the whole disk. Because each new
directory went into a block group with lots of free space, there was a good chance that
the files contained in that directory would fit in the same block group with it. How-
ever, traversing a directory tree could take a long time with these allocation policies,
because each directory might be nowhere near its parent directory.

Therefore, more recent versions of ext3fs and similar file systems have used a dif-
ferent allocation policy for directories, developed by Orlov. A subdirectory is allocated
in the parent directory’s block group, provided that it doesn’t get too crowded. Failing
that, the allocation policy looks through the subsequent block groups for one thatisn’t
too crowded. This preserves locality across entire directory trees without stuffing any
block group so full of directories that the corresponding files won't fit. The result can
be significant performance improvements for workloads that traverse directory trees.

Once a file system decides to locate a file within a particular block group, it still
needs to allocate one or more extents of disk blocks to hold the file’s data. (Hopefully
those extents will all lie within the chosen block group, although there needs to be a
way for large files to escape from the confines of a single block group.)

The biggest challenge in allocating extents is knowing how big an extent to allo-
cate. Some older file systems required application programmers to specify each file’s
size at the time the file was created, so that the system could allocate an extent of
corresponding size. However, modern systems don’t work this way; instead, each file
grows automatically to accommodate the data written into it.

To meet this challenge, modern operating systems use a technique known as
delayed allocation. As background, you need to understand that operating systems do
not normally write data to disk the moment an application program issues a write
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request. Instead, the data is stored in RAM and written back to disk later. This delay
in writing yields two options for when the disk space is allocated: when the data goes
into RAM or later when it gets written to disk.

Without delayed allocation, the operating system needs to choose a disk block to
hold the data at the time it goes into RAM. The system tags the data in RAM with
the disk block in which that data belongs. Later, the system writes the data out to the
specified location on disk. This approach is simple, but requires the operating system
to allocate space for the first block of data as soon as it is generated, before there is any
clue how many more blocks will follow.

Delayed allocation puts off the choice of disk block until the time of actually writ-
ing to disk; the data stored in RAM is tagged only with the file it should be written to
and the position within that file. Now the operating system does not need to guess
how much data a program is going to write at the time when it generates the first
block. Instead, it can wait and see how much data gets written and allocate an extent
that size.

Once the operating system knows the desired extent size, it needs to search the data
structure that records the available space. Bitmaps (whether in individual block groups
or otherwise) are not the only option for tracking free space. The XFS file system, which
was particularly designed for large file systems, takes an alternative approach. It uses
balanced search trees, known as B-trees, to track the free extents of disk space. One
B-tree stores the free extents indexed by their location while another indexes them
by their size. That way, XFS can quickly locate free space near a specified location on
disk or can quickly locate a desired amount of space. Technically, the trees used by
XFS are a slight variant of B-trees, known as B*-trees. I'll describe this data structure
in Section 8.5.1.

With free extents indexed by size in a B*-tree, the XFS allocator can naturally use
a best-fit policy, where it finds the smallest free extent bigger than the desired size. (If
the fit is not exact, the extra space can be broken off and left as a smaller free extent.)
With a bitmap, on the other hand, the most natural allocation policy is first-fit, the
policy of finding the first free extent that is large enough. Each policy has its merits;
you can compare them in Exercise 8.9.

8.5 Metadata

You have seen that a file system is analogous to a virtual memory system. Each has
an allocation policy to select concrete storage locations for each chunk of data. Con-
tinuing the analogy, I will now explain the metadata that serves as the analog of page
tables. Recall that in a system with separate address spaces, each process has its own
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page table, storing the information regarding which page frame holds that process’s
page O, page 1, and so forth. Similarly, each file has its own metadata storing the infor-
mation regarding which disk block holds that file’s block 0, block 1, and so forth. You
will see that, as with page tables, there are several choices for the data structure holding
this mapping information. I discuss these alternative structures in Section 8.5.1.

Metadata is data about data. Information regarding where on disk the data is stored
is one very important kind of metadata. However, I will also more briefly enumerate
other kinds. First, in Section 8.5.2, I will revisit access control, a topic I considered
from another perspective in Chapter 7. In Section 8.5.2, the question is not how access
control information is enforced during access attempts, but how it is stored in the file
system. Second, I will look in Section 8.5.3 at the other more minor, miscellaneous
kinds of metadata (beyond data location and access control), such as access dates and
times.

Some authors include file names as a kind of metadata. This makes sense in those
file systems where each file has exactly one name. However, most modern file systems
do not fit this description; a file might have no names, or might have multiple names.
Thus, you are better off thinking of a name not as a property of a file, but as a route that
can lead to a file. Similarly, in other persistence services, data may be accessed through
multiple routes, such as database indexes. Therefore, I will not include naming in this
section on metadata, instead including it in Section 8.6 on directories and indexing.

8.5.1 Data Location Metadata

The simplest representation for data location metadata would be an array of disk block
numbers, with element i of the array specifying which disk block holds block i of the
file. This would be analogous to a linear page table. Traditional UNIX file systems
(including Linux’s ext2fs and ext3fs) use this approach for small files. Each file’s array
of disk block numbers is stored in the file’s metadata structure known as its inode (short
for index node). For larger files, these file systems keep the inodes compact by using
indirect blocks, roughly analogous to multilevel page tables. I discuss the traditional
form of inodes and indirect blocks next. Thereafter, I discuss two alternatives used in
some more modern file systems: extent maps, which avoid storing information about
individual blocks, and B-trees, which provide efficient access to large extent maps.

Inodes and Indirect Blocks

When UNIX was first developed in the early 1970s, one of its many innovative fea-
tures was the file system design, a design that has served as the model for commonly
used UNIX and Linux file systems to the present day, including Linux’s ext3fs. The
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data-location metadata in these systems is stored in a data structure that can better be
called expedient than elegant. However, the structure is efficient for small files, allows
files to grow large, and can be manipulated by simple code.

Each file is represented by a compact chunk of data called an inode. The inode
contains the file’s metadata if the file is small or an initial portion of the metadata if
the file is large. By allowing large files to have more metadata elsewhere (in indirect
blocks), the inodes are kept to a small fixed size. Each file system contains an array
of inodes, stored in disk blocks set aside for the purpose, with multiple inodes per
block. Each inode is identified by its position in the array. These inode numbers (or
inumbers) are the fundamental identifiers of the files in a file system; essentially, the
files are identified as file O, file 1, and so forth, which indicate the files with inodes in
position 0, 1, and so forth. Later, in Section 8.6, you'll see how file names are mapped
into inode numbers.

Each inode provides the metadata for one file. The metadata includes the disk
block numbers holding that file’s data, as well as the access permissions and other meta-
data. These categories of metadata are shown in Figure 8.6. In this simplified diagram,
the inode directly contains the mapping information specifying which disk block con-
tains each block of the file, much like a linear page table. Recall, however, that inodes
are a small, fixed size, whereas files can grow to be many blocks long. To resolve this
conflict, each inode directly contains the mapping information only for the first dozen
or so blocks. (The exact number varies between file systems, but is consistent within
any one file system.) Thus, a more realistic inode picture is as shown in Figure 8.7.

Before I go into detail on how further disk blocks are indirectly accessed, I should
emphasize one aspect of the inode design. The low-numbered blocks of a file are
mapped in the exact same way (directly in the inode) regardless of whether they are
the only blocks in a small file or the first blocks of a large file. This means that large files
have a peculiar asymmetry, with some blocks more efficiently accessible than others.

file block 0’s disk block number
file block 1’s disk block number
file block 2’s disk block number

access permissions

other metadata

Figure 8.6 This initial approximation of an inode shows the principle categories of metadata. How-
ever, this diagram is unrealistic in that the list of disk block numbers seems to be unlimited, whereas
actual inodes have only a limited amount of space.
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file block 0’s disk block number

file block 11’s disk block number
indirect access to file block 12 through the end of the file
access permissions
other metadata

Figure 8.7 In this limited-size inode, blocks from number 12 to the end of the file are indirectly
referenced.

Inode Indirect block
file block 0’s disk block number file block 12’s disk block number
file block 11’s disk block number file block 1035’s disk block number

indirect block’s block number
access permissions
other metadata

Figure 8.8 If an inode were used with a single indirect block, the block numbers would be stored
as shown here. Note that the indirect block is actually considerably larger than the inode, contrary to
its appearance in the figure.

The advantage is that when a file grows and transitions from being a small file to being
a large one, the early blocks’ mapping information remains unchanged.

Because most files are small, the inodes are kept small, a fraction of a block in size.
(If inodes were full blocks, the overhead for single-block files would be 100 percent.)
For those files large enough to overflow an inode, however, one can be less stingy in
allocating space for metadata. Therefore, if the system needs more metadata space, it
doesn’t allocate a second inode; it allocates a whole additional disk block, an indirect
block. This provides room for many more block numbers, as shown in Figure 8.8. The
exact number of additional block numbers depends on how big blocks and block num-
bers are. With 4-KB blocks and 4-byte block numbers, an indirect block could hold 1 K
block numbers (that is, 1024 block numbers), as shown in the figure. This kind of indi-
rect block is more specifically called a single indirect block, because it adds only a single
layer of indirection: the inode points to it, and it points to the data blocks.

In this example with 4-KB blocks, the single indirect block allows you to accom-
modate files slightly more than 4 MB in size. To handle yet-larger files, you can use
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Inode Single indirect block
file block 0’s disk block number file block 12’s disk block number
file block 11’s disk block number file block 1035’s disk block number

single indirect block’s number
double indirect block’s number
access permissions
other metadata

Double indirect block Indirect block 1
indirect block 1’s block number file block 1036’s disk block number
indirect block 1024’s block number file block 2059’s disk block number

Indirect blocks 2-1024: similar to indirect block 1

Figure 8.9 If an inode were used with single and double indirect blocks, the block numbers would
be stored as shown here.

a multilevel tree scheme, analogous to multilevel page tables. The inode can con-
tain a block number for a double indirect block, which contains block numbers for
many more single indirect blocks, each of which contains many data block num-
bers. Figure 8.9 shows this enhancement to the inode design, which retains the dozen
direct blocks and the original single indirect block, while adding a double indirect
block.

Because the double indirect block points at many indirect blocks, each of which
points at many data blocks, files can now grow quite large. (In Exercise 8.10, you can
figure out just how large.) However, many UNIX file systems go one step further by
allowing the inode to point to a triple indirect block as well, as shown in Figure 8.10.
Comparing this with multilevel page tables is illuminating; the very unbalanced tree
used here allows a small, shallow tree to grow into a large, deeper tree in a straight-
forward way. Later you'll see that B-trees grow somewhat less straightforwardly, but
without becoming so imbalanced.

Having presented this method of mapping file blocks into disk blocks, I will shortly
turn to an alternative that avoids storing information on a per-block basis. First, how-
ever, it is worth drawing one more analogy with page tables. Just as a page table need
not provide a page frame number for every page (if some pages are not in memory),
an inode or indirect block need not provide a disk block number for every block of the
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A few data blocks | Single indirect | Double indirect | | Triple indirect |
Many data blocks Many mdlrect Many double

indirect blocks

Tons of data blocks Tons of indirect blocks

Astronomically
many data blocks

Figure 8.10 The full structure of a file starts with an inode and continues through a tree of single,
double, and triple indirect blocks, eventally reaching each of the data blocks.

file. Some entries can be left blank, typically by using some reserved value that cannot
be mistaken for a legal disk block number. This is valuable for sparse files, also known
as files with holes. A sparse file has one or more large portions containing nothing but
zeros, usually because those portions have never been written. By not allocating disk
blocks for the all-zero file blocks, the file system can avoid wasting space and time.

Extent Maps

You have seen that traditional inodes and indirect blocks are based around the notion
of a block map, that is, an array specifying a disk block number for each file block. A
block map is completely general, in that each file block can be mapped to any disk
block. File block n can be mapped somewhere totally different on disk from file block
n — 1. Recall, however, that file system designers prefer not to make use of this full
generality. For performance reasons, consecutive file blocks will normally be allocated
consecutive disk blocks, forming long extents. This provides the key to a more efficient
data structure for storing the mapping information.

Suppose you have a file that is 70 blocks long and that occupies disk blocks 1000-
1039 and 1200-1229. A block map would contain each one of those 70 disk block
numbers. An extent map, on the other hand, would contain only two entries, one
for each of the file’s extents, just as the opening sentence of this paragraph contains
two ranges of block numbers. Each entry in the extent map needs to contain enough
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information to describe one extent. There are two alternatives for how this can be
done:

e Fach entry can contain the extent’s length and starting disk block number. In the
example, the two extent map entries would be (40, 1000) and (30, 1200). These
say the file contains 40 blocks starting at disk block 1000 and 30 blocks starting at
disk block 1200.

e Fach entry can contain the extent’s length, starting file block number, and starting
disk block number. In the example, the two extent map entries would be (40, O,
1000) and (30, 40, 1200). The first entry describes an extent of 40 blocks, starting
at position 0 in the file and occupying disk blocks starting with number 1000. The
second entry describes an extent of 30 blocks, starting at position 40 in the file
and occupying disk blocks starting with number 1200.

The first approach is more compact. The second approach, however, has the advantage
that each extent map entry can be understood in isolation, without needing to read the
preceding extent map entries. This is particularly useful if the extent map is stored in a
B-tree, as I will discuss subsequently. For simplicity, I will assume the second approach
in the remainder of my discussion, though there are systems that use each.

At first, it may not be obvious why extent maps are a big improvement. A typical
block map system might use a 4-byte block number to refer to each 4-KB block. This
is less than one-tenth of one percent space overhead, surely affordable with today’s
cheap disk storage. What reason do file system designers have to try to further reduce
such an already small overhead? (I will ignore the possibility that the extent map takes
more space than the block map, which would happen only if the file is scattered into
lots of tiny extents.)

The key fact is that disk space efficiency turns into time efficiency, which is a much
more precious commodity. Indirect blocks result in extra disk I/O operations. Consider,
for example, reading a file that is stored in a single 20-block extent. With the block
map approach, the file system would need to do at least two disk read operations: one
to read the single indirect block and one to read the data blocks. This assumes the
inode is already cached in memory, having been read in along with other inodes in its
disk block, and that the file system is smart enough to read all 20 data blocks in a single
operation. With an extent map, the entire mapping information would fit in the inode;
if you again assume the inode is cached, a single read operation suffices. Thus, the
system can read files like this twice as fast. Admittedly, this is a somewhat artificial best-
case example. However, even with realistic workloads, a significant speedup is possible.

Several modern file systems use extent maps, including Microsoft Windows’ NTES,
Mac OS X’s HES Plus, and XFS, which was ported into Linux from SGI’s IRIX version
of UNIX. For files that have only a handful of extents (by far the most common case),
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all three store the sequence of extent map entries in the inode or (in Windows and
Mac OS X) in the corresponding inode-like structure. The analogs of inodes in NTFS
are large enough (1 KB) that they can directly store entire extent maps for most files,
even those with more than a few extents. The other two file systems use smaller inodes
(or inode-like structures) and so provide an interesting comparison of techniques for
handling the situation where extra space is needed for a large extent map.

HEFS Plus takes an approach quite reminiscent of traditional UNIX inodes: the first
eight extent map entries are stored directly in the inode-like structure, whether they
are the only ones or just the first few of a larger number. Any additional entries are
stored elsewhere, in a single B-tree that serves for all the files, as I will describe sub-
sequently. XES, on the other hand, stores all the extent map entries for a file in a
file-specific B-tree; the space in the inode is the root node of that tree. When the tree
contains only a few extents, the tree is small enough that the root of the tree is also
a leaf, and so the extents are directly in the inode, just as with HES Plus. When the
extent map grows larger, however, all the entries move down into descendant nodes
in the tree, and none are left in the inode, unlike HFS Plus’s special treatment of the
first eight.

B-Trees

The B-tree data structure is a balanced search tree structure generally configured with
large, high-degree nodes forming shallow, bushy trees. This property makes it well
suited to disk storage, where transferring a large block of data at once is efficient (hence,
large nodes), but performing a succession of operations is slow (hence, a shallow tree).
You may have encountered B-trees before, in which case my summary will be a review,
with the exception of my description of specific applications for which this structure
is used.

Any B-tree associates search keys with corresponding values, much like a dictionary
associates words with their definitions or a phone book associates names with phone
numbers. The keys can be textual strings organized in alphabetic order (as in these
examples) or numbers organized by increasing value; all that is required is that there
is some way to determine the relative order of two keys.

The B-tree allows entries to be efficiently located by key, as well as inserted and
deleted. Thus far, the same could be said for a hash table structure, such as is used
for hashed page tables. Where B-trees (and other balanced search trees) distinguish
themselves is that they also provide efficient operations based on the ordering of keys,
rather than just equality of keys. For example, if someone asks you to look up “Smit” in
a phone book, you could reply, “There is no Smit; the entries skip right from Smirnoff
to Smith.” You could do the same with a B-tree, but not with a hash table.
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This ability to search for neighbors of a key, which need not itself be present in the
tree, is crucial when B-trees are used for extent maps. Someone may want information
about the extent containing file block 17. There may be no extent map entry explicitly
mentioning 17; instead, there is an entry specifying a 10-block extent starting with file
block 12. This entry can be found as the one with the largest key that is less than or
equal to 17.

B-trees can play several different roles in persistence systems. In Section 8.6, you'll
see their use for directories of file names and for indexes of database contents; both
are user-visible data access services. In the current section, B-trees play a more behind-
the-scenes role, mapping positions within a file to locations on disk. Earlier, in Sec-
tion 8.4.3, you saw another related use, the management of free space for allocation.
The data structure fundamentals are the same in all cases; I choose to introduce them
here, because extent maps seem like the simplest application. Free space mapping is
complicated by the dual indexing (by size and location), and directories are compli-
cated by the use of textual strings as keys.

You are probably already familiar with binary search trees, in which each tree node
contains a root key and two pointers to subtrees, one with keys smaller than the root
key, and one with keys larger than the root key. (Some convention is adopted for which
subtree contains keys equal to the root key.) B-tree nodes are similar, but rather than
using a single root key to make a two-way distinction, they use N root keys to make
an N + 1 way distinction. That is, the root node contains N keys (in ascending order)
and N + 1 pointers to subtrees, as shown in Figure 8.11. The first subtree contains
keys smaller than the first root key, the next subtree contains keys between the first
and second root keys, and so forth. The last subtree contains keys larger than the last
root key.

Key; Key, ... Keyy
[\

s

~N

Figure 8.11 A B-tree node contains N keys and N + 1 pointers to the subtrees under it. Each
subtree contains keys in a particular range.
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If a multi-kilobyte disk block is used to hold a B-tree node, the value of N can be
quite large, resulting in a broad, shallow tree. In fact, even if a disk block were only half
full with root keys and subtree pointers, it would still provide a substantial branching
factor. This observation provides the inspiration for the mechanism used to maintain
B-trees as entries are inserted.

Each node is allowed to be anywhere between half full and totally full. This flexi-
bility means one can easily insert into a node, so long as it is less than full. The hard
case can be handled by splitting nodes. As a special exception, the root node is not
required to be even half full. This exception allows you to build a tree with any number
of nodes, and it adds at most one level to the height of the tree.

Consider, for example, inserting one more entry into an already full node. After
insertion, you have N + 1 keys but only room for N. The node can be replaced with
two nodes, one containing the N/2 smallest keys and the other the N/2 largest keys.
Thus, you now have two half-full nodes. However, you have only accounted for N of
the N + 1 keys; the median key is still left over. You can insert this median key into
the parent node, where it will serve as the divider between the two half-full nodes, as
shown in Figure 8.12.

When you insert the median key into the parent node, what if the parent node is
also full? You split the parent as well. The splitting process can continue up the tree,
but because the tree is shallow, this won'’t take very long. If the node being split has no
parent, because it is the root of the tree, it gains a new parent holding just the median
key. In this way the tree grows in height by one level.

In Bayer and McCreight’s 1972 paper introducing B-trees, they suggested that each
node contain key/value pairs, along with pointers to subtrees. Practical applications
today instead use a variant, sometimes called B*-trees. In a B*-tree, the nonleaf nodes
contain just keys and pointers to subtrees, without the keys having any associated
values. The keys in these nodes are used solely for navigation to a subtree. The leaves

Before inserting 16 After inserting 16
oo SN2 oo Parent ooo 12\20 Parent

/ | \
681218 Full node 68 16 18 Two half-full nodes

Figure 8.12 Inserting 16 into the illustrated B-tree, which has node-capacity 4, causes a node to
split, with the median key moving into the parent.
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/ 50 ;160 \
Starting file block: 0 8 50 90 130 160 200
Length: 8 42 40 40 30 40 100
Starting disk block: | 1000 | 800 1200 | 1791 | 314 271 50

Figure 8.13 This small B*-tree extent map contains information that can be used to find each
extent’s range of file block numbers and range of disk block numbers. Because the tree is a B*-tree
rather than a B-tree, all the extents are described in the leaves, with the nonleaf node containing just
navigational information.

contain the key/value pairs that are the actual contents of the data structure. For exam-
ple, a small B*-tree of extent map entries might be organized as shown in Figure 8.13.
As an additional refinement, each leaf node usually contains pointers to the neigh-
boring leaf nodes to its left and right. This speeds operations such as traversing the
extents in order.

This sort of B*-tree can store the extent map for a single file, as is done in XFS. For
Mac OS X’s HES Plus, a slightly different approach is needed, because all files” extent
maps are combined into a single B*-tree. (Recall, though, that the first eight extents
of each file are not included in this tree.)

Each entry in this file system’s B-tree describes an extent map entry for some posi-
tion within some file. That is, the entry contains a file number (analogous to an inode
number), a starting block number within the file, a length in blocks, and a starting
disk block number. The concatenation of file number and starting file block number
serves as the key. That way, all the entries for a particular file appear consecutively in
the tree, in order by their position within the file.

The insertion algorithm for B*-trees is a slight variant of the one for pure B-trees;
you can work through the differences in Exercise 8.13.

8.5.2 Access Control Metadata

The complexity of the data structures storing access control information is directly
related to the sophistication of the protection system. Recall that the POSIX speci-
fication, followed by UNIX and Linux, provides for only fixed-length access control
lists (ACLs), with permissions for a file’s owner, owning group, and others. This infor-
mation can be stored compactly in the file’s inode. Microsoft Windows, on the other
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hand, allows much more general ACLs. Thus, the designers of NTFS have faced a more
interesting challenge and, in fact, have revisited their design decision, as you will see.

For POSIX-compliant access control, an inode can contain three numbers: one
identifying the file’s owning user, one identitying the file’s owning group, and one
containing nine bits, representing the rwx permissions for the owning user, the own-
ing group, and other users. This third number, containing the nine permission bits,
is called the file’s mode. Rather than waste all but nine bits in the mode, the others
are used to encode additional information, such as whether the file is a regular file, a
directory, an 1I/O device, and so forth. Figure 8.14 shows how the permissions can be
determined by extracting an inode’s mode using the stat system call. (This system
call differs only slightly from fstat, which you saw earlier. The file is specified by
name, rather than by a numerical file descriptor.) If you compile this C++ program
and call the resulting executable stater, then a command like . /stater somefile
should produce information you could also get with 1s -1 somefile.

Early versions of NTFS stored the full ACL for each file independently. If the ACL
was small enough to fit in the inode-like structure, it was stored there. Otherwise,
it was stored in one or more extents of disk blocks, just like the file’s data, and the
inode-like structure contained an extent map for the ACL.

As of Windows 2000, Microsoft redesigned NTFS to take advantage of the fact that
many files have identical ACLs. The contents of the ACLs are now stored in a cen-
tralized database. If two files have identical ACLs, they can share the same underlying
representation of that ACL.

8.5.3 Other Metadata

Because files can be of any length, not just a multiple of the block size, each inode (or
equivalent) contains the file’s size in bytes. (The program in Figure 8.3 on page 278
showed how you can retrieve this information.) Other metadata is much more system-
specific. For example, POSIX specifies that each file has three time stamps, recording
when the file was last accessed, last written, and last modified in any way. Modifica-
tion includes not only writing the data, but also making changes in permissions and
other metadata attributes. NTFS records whether the file should be hidden in ordinary
directory listings. HFS Plus has many metadata attributes supporting the graphical user
interface; for example, each file records its icon’s position.

One metadata attribute on POSIX systems connects with file linking, that is, the
use of multiple names for one file, which is the topic of Section 8.6.3. Each file’s inode
contains a count of how many names refer to the file. When that count reaches zero
and the file is not in use by any process, the operating system deletes the file. The
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#include <unistd.h>
#include <time.h>
#include <sys/stat.h>
#include <stdio.h>
#include <iostream>
using namespace std;

static void print_bit(int test, char toPrint) {

if (test)
cout << toPrint;
else
cout << '-’';
}
int main(int argc, char *argv[]){
if (argec = 2){
cerr << "Usage: " << argv[0] << " filename" << endl;

return -1;
}
struct stat info;
if(stat(argv[l], &info) < 0){
perror (argv[l]);
return -1;
}
print_bit(info.st_mode
print_bit(info.st_mode
print_bit (info.st_mode
print_bit(info.st_mode
print_bit(info.st_mode
print_bit (info.st_mode
print_bit(info.st_mode
print_bit (info.st_mode
print_bit(info.st_mode
cout << endl;
return 0;

S_IRUSR, ’'r’);
S_IWUSR, 'w’);
S_IXUSR, ’'x');
S_IRGRP, 'r’);
S_IWGRP, 'w’);
S_IXGRP, ’'x’');
S_IROTH, 'r’);
S_IWOTH, 'w’);
S_IXOTH, 'x');

RRRRYRYRRRR

Figure 8.14 This C++ program, stater.cpp, uses stat to retrieve access control metadata
for whichever file is specified by the command-line argument argv[1].
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operation users normally think of as deleting a file actually just removes a name; the
underlying file may or may not be deleted as a consequence.

8.6 Directories and Indexing

Having seen how file systems provide the storage for files, you are now ready to con-
sider how those systems allow files to be located by name. As a similar question regard-
ing database systems, you can consider how those systems provide indexed lookup.
In Section 8.6.1, I set the stage for this discussion by presenting a common framework
for file directories and database indexes, showing the ways in which they differ. In Sec-
tion 8.6.2, I show how the separation between file directories and database indexes is
currently weakening with the introduction of indexing mechanisms for locating files.
Having shown the basic principles of both directories and indexes, I use Section 8.6.3
to dig into one particular aspect of file directories in more detail: the ways in which
multiple names can refer to a single file. Finally, in Section 8.6.4, I take you behind
the scenes to look at typical data structures used for directories and indexes.

8.6.1 File Directories Versus Database Indexes

Traditionally, file systems include directories, which provide access to files by name.
Databases, on the other hand, include indexes, which provide access to entries in the
database based on a portion of the contents. This clean distinction between file sys-
tems and databases is currently blurring, as alternative file-access techniques based on
indexes become available. In particular, Apple introduced such a feature in Mac OS X
version 10.4 under the name Spotlight. I describe Spotlight in Section 8.6.2. Microsoft
has announced that Windows Vista will contain a similar feature and that a more
ambitious integration of database and file system technology, known as WinFES, will
follow in a subsequent update to Windows. This trend makes it even more important
to see what directories and indexes have in common and what distinguishes them.
Both directories and indexes provide a mapping from keys to objects. The keys in a
directory are names, which are external to the object being named. You can change the
contents of a file without changing its name or change the name without changing the
contents. In contrast, the keys in an index are attributes of the indexed objects, and
so are intrinsic to those objects. For example, an index on a database table of chapters
might allow direct access to the row with the title "Files and Other Persistent
Storage" or with the number 8. If the row were updated to show a change in this
chapter’s title or number, the index would need to be updated accordingly. Similarly,
any update to the index must be in the context of a corresponding change to the
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indexed row; it makes no sense to say that you want to look up the row under chapter
number 1, but there find that the real chapter number is still 8.

Each name in a directory identifies a unique file. Two files may have the same
name in different directories, but not in the same directory. Database indexes, on the
other hand, can be either for a unique attribute or a non-unique one. For example, it
may be useful to index a table of user accounts by both the unique login name and
the non-unique last name. The unique index can be used to find the single record
of information about the user who logs in as "jdoe", whereas the non-unique index
can be used to find all the records of information about users with last name "Doe".
An index can also use a combination of multiple attributes as its key. For example,
a university course catalog could have a unique index keyed on the combination of
department and course number.

The final distinction between file directories and database indexes is the least fun-
damental; it is the kind of object to which they provide access. Traditionally, directo-
ries provide access to entire files, which would be the analog of tables in a relational
database. Indexes, on the other hand, provide access not to entire tables, but rather
to individual rows within those tables. However, this distinction is misleading for two
reasons:

e Database systems typically have a meta-table that serves as a catalog of all the
tables. Each row in this meta-table describes one table. Therefore, an index on
this meta-table’s rows is really an index of the tables. Access to its rows is used to
provide access to the database’s tables.

e As I mentioned earlier, operating system developers are incorporating indexes in
order to provide content-based access to files. This is the topic of Section 8.6.2.

8.6.2 Using Indexes to Locate Files

As I have described, files are traditionally accessed by name, using directories. How-
ever, there has been considerable interest recently in using indexes to help users locate
files by content or other attributes. Suppose that I could not remember the name of
the file containing this book. That would not be a disaster, even leaving aside the pos-
sibility that the world might be better off without the book. I could search for the file
in numerous ways; for example, it is one of the few files on my computer that has
hundreds of pages. Because the Mac OS X system that I am using indexes files by page
count (as well as by many other attributes), I can simply ask for all files with greater
than 400 pages. Once I am shown the five files meeting this restriction, it is easy to
recognize the one I am seeking.

The index-based search feature in Mac OS X, which is called Spotlight, is not an
integral component of the file system in the way directories and filenames are. Instead,
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the indexing and search are provided by processes external to the operating system,
which can be considered a form of middleware.

The file system supports the indexing through a generic ability to notify processes
of events such as the creation or deletion of a file, or a change in a file’s contents.
These events can be sent to any process that subscribes to them and are used for other
purposes as well, such as keeping the display of file icons up to date. The Spotlight fea-
ture uses it to determine when files need reindexing. When I save out a new version
of my book, the file system notifies Spotlight that the file changed, allowing Spot-
light to update indexes such as the one based on page count. Unlike file directories,
which are stored in a special data structure internal to the file system, the indexes for
access based on contents or attributes like page counts are stored in normal files in the
/.Spotlight-v100 directory.

Apple refers to the indexed attributes (other than the actual file contents) as meta-
data. In my book example, the number of pages in a document would be one piece
of metadata. This usage of the word “metadata” is rather different from its more tra-
ditional use in file systems. Every file has a fixed collection of file system metadata
attributes, such as owner, permissions, and time of last modification. By contrast, the
Spotlight metadata attributes are far more numerous, and the list of attributes is open-
ended and specific to individual types of files. For example, while the file containing
my book has an attribute specifying the page count, the file containing one of my vaca-
tion photos has an attribute specifying the exposure time in seconds. Each attribute
makes sense for the corresponding file, but would not make sense for the other one.

As you have seen, the metadata attributes that need indexing are specific to indi-
vidual types of files. Moreover, even common attributes may need to be determined in
different ways for different types of files. For example, reading a PDF file to determine
its number of pages is quite different from reading a Microsoft Word file to determine
its number of pages—the files are stored in totally different formats. Therefore, when
the indexing portion of Spotlight receives notification from the file system indicating
that a file has changed, and hence should be indexed, it delegates the actual index-
ing work to a specialist indexing program that depends on the type of file. When you
install a new application program on your system, the installation package can include
a matching indexing program. That way you will always be able to search for files on
your system using relevant attributes, but without Apple having had to foresee all the
different file types.

8.6.3 File Linking

Indexed attributes, such as page counts, are generally not unique. My system may well
have several five-page documents. By contrast, you have already seen that each name
within a directory names a unique file. Just because each pathname specifies a single
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file does not mean the converse is true, however. In this subsection, I will explain two
different ways in which a file can be reachable through multiple names.

The most straightforward way in which multiple names can reach a single file is if
the directory entry for each of the names specifies the same file. Figure 8.15 shows a
directory with two names, both referring to the same file. In interpreting this figure,
you should understand that the box labeled as the file does not denote just the data
contained in the file, but also all of the file’s metadata, such as its permissions. In the
POSIX AP], this situation could have arisen in at least two different ways:

e The file was created with the name alpha, and then the procedure call
link("alpha", "beta") added the name beta.

e The file was created with the name beta, and then the procedure call
link("beta", "alpha") added the name alpha.

No matter which name is the original and which is added, the two play identical
roles afterward, as shown in Figure 8.15. Neither can be distinguished as the “real”
name. Often people talk of the added name as a link to the file. However, you need
to understand that all file names are links to files. There is nothing to distinguish one
added with the 1ink procedure.

POSIX allows a file to have names in multiple directories. In the previous illustra-
tion (Figure 8.15), alpha and beta in the current directory named one file. Instead,
I could have had directory entries in multiple directories all pointing at the same file.
For example, in Figure 8.16, I show a situation where /alpha/beta is a name for the
same file as /gamma/delta.

To keep the directory structure from getting too tangled, POSIX systems ordinarily
do not allow a directory to have more than one name. One exception is that each
directory contains two special entries: one called . thatis an extra link to that directory
itself and one called .. that is an extra link to its parent directory.

Just as 1ink adds a name for a file, unlink removes a name. For example,
unlink (" /alpha/beta") would eliminate one of the two routes to the file in Fig-
ure 8.16 by removing the beta entry from the directory alpha. As mentioned ear-
lier, removing a name only implicitly has anything to do with removing a file. The

Name File

alpha | —]
P T thefile

beta -]

Figure 8.15 A directory can contain two names for one file.
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Name File Name File
Root:

alpha beta /

gamma /

Name /ﬁle

delta the file

Figure 8.16 A file can have two different names, each in its own directory. In this example, the two
pathnames /alpha/beta and /gamma/delta both lead to the same file.

Name File

alpha | beta
the file

beta -]

Figure 8.17 A symbolic link allows a file name to refer to a file indirectly, by way of another file
name.

operating system removes the file when it no longer has any names and is no longer
in use by any process. (An open file can continue to exist without any names, as you
can demonstrate in Exploration Project 8.10.)

POSIX also supports another alternative for how multiple names can lead to one
file. One name can refer to another name and thereby indirectly refer to the same file
as the second name. In this situation, the first name is called a symbolic link. Figure 8.17
shows an example, where alpha is specified as a symbolic link to beta, and thereby
refers to whatever file beta does. (Symbolic links are also sometimes called soft links.
Ordinary links are called hard links when it is important to emphasize the difference.)
In this figure, [ show that a directory can map each name to one of two options: either
a pointer to a file (which could be represented as an inode number) or another name.
The code that looks up filenames, in procedures such as open, treats these two options
differently. When it looks up alpha and finds beta, it recursively looks up beta, so
as to find the actual file. The symbolic link shown in Figure 8.17 could be created by
executing symlink ("beta", "alpha").

Symbolic links are somewhat tricky, because they can form long chains, dangling
references, or loops. In the preceding example, you could form a longer chain by
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adding gamma as a symbolic link to alpha, which is already a symbolic link to beta.
The code for looking up files needs to traverse such chains to their end. However, there
may not be a file at the end of the chain. If you were to execute unlink ("beta"),
then you would have a dangling reference: gamma would still be a symbolic link to
alpha, which would still be a symbolic link to beta, which wouldn’t exist any more.
Worse, having deleted beta, you could reuse that name as a symbolic link to alpha,
creating a loop. All POSIX procedures that look up files must return a special error
code, ELOOP, if they encounter such a situation. In addition to returning ELOOP for
true loops, these procedures are allowed to return the same error code for any chain
of symbolic links longer than some implementation-defined maximum.

You can create either a symbolic link or an ordinary hard link from within a shell
by using the 1n command. This command runs a program that will invoke either the
link procedure or the symlink procedure. You can explore this command and the
results it produces in Exploration Projects 8.9 and 8.11.

Some file systems outside the UNIX tradition store the metadata for a file directly
in that file’s directory entry, rather than in a separate structure such as an inode. This
tightly binds the name used to reach the file together with the identity of the file
itself. In effect, the name becomes an attribute of the file, rather than just a means of
accessing the file. In systems of this kind, symbolic links can still be used, but there is
no easy analog for hard links. This leads to an interesting situation when one of these
systems needs to be retrofitted for POSIX compliance.

For example, Apple’s HFS Plus was developed before Mac OS became based on
UNIX, which happened in Mac OS X. The underlying design assumes that each file
has exactly one name and fuses together the directory and metadata structures. Yet
Mac OS X is a UNIX system and so needs to support files with multiple names (created
with 1ink) or no names (if still in use when unlinked). To accommodate this, Apple
puts any file that is in either of these situations into a special invisible directory with
a random number as its name. Any other names for the file are provided by a special
kind of symbolic link, which is made completely invisible to the POSIX API, even to
those procedures that normally inspect symbolic links rather than simply following
them to their targets.

8.6.4 Directory and Index Data Structures

The simplest data structure for a directory or index is an unordered linear list of
key/value pairs. Whereas this is never used for a database index, it is the most tra-
ditional approach for directories in UNIX-family file systems and remains in use in
many systems to this day. With this structure, the only way to find a directory entry
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is through linear search. (For a database, unordered linear search is available without
any index at all by searching the underlying rows of the database table.)

For small directories, a linear search can perform quite reasonably. Therefore, sys-
tem administrators often design directory trees so that each directory remains small.
For example, my home directory is not /home /max, but rather /home /m/a/max, where
the m and a come from the first two letters of my username. That way, the /home direc-
tory has only 26 entries, each of which in turn has 26 entries, each of which has only
one small fraction of the thousands of users’ home directories. As you will see shortly,
this kind of directory tree is no longer necessary with a modern file system. On a mod-
ern system, my files could be in /home/max, and similarly for the thousands of other
users, without a major slowdown—unless, of course, someone listed the contents of
/home.

A second alternative structure is a hash table. A hash table is a numerically indexed
array of key/value pairs where software can directly access entry number i without
looking at the preceding entries. The trick is to know (most of the time) which entry
would contain a particular key; this knowledge comes from using a hash function of
the key as the entry number. So long as no two keys collide and are assigned the same
location, looking up a particular entry (such as the one for max inside the /home direc-
tory) is a constant-time operation, independent of the table size. All that is necessary
is to hash the key into a numerical hash code and use that code to directly access the
appropriate entry. If it contains the desired key (max), the lookup is complete. If it
contains no key at all, the lookup is also complete and can report failure. If, due to a
collision, the entry contains some other key than the one being looked for, the system
must start searching through alternative locations. That searching, however, can be
kept very rare, by ensuring that the table is never very full.

Hash tables are occasionally used for database indexes; in particular, they are an
option in PostgreSQL. However, as I mentioned in Section 8.5.1, they have the disad-
vantage relative to B-trees of not supporting order-based accesses. For example, there
is no way to use a hash table index to find all rows in an accounting table for payments
made within a particular range of dates. Hash indexes may also not perform as well
as B-tree indexes; the PostgreSQL documentation cites this as a reason to discourage
their use.

Hash tables are also occasionally used for indexing file system directories. In par-
ticular, the FFS file system used in BSD versions of UNIX supports a directory hashing
extension. This feature builds a hash table in memory for large directories at the time
they are accessed. However, the on-disk data structure remains an unsorted linear list.

B-trees are the dominant structure for both database indexes and contemporary
file systems’ directories. I already discussed the structure of B-trees in Section 8.5.1
and showed how they provide highly efficient access. As examples, B-trees are used
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for directories in Microsoft’s NTES, in SGI's XFS, and (in a different form) in Apple’s
HEFS Plus.

In most systems, each index or directory is represented by its own B-tree. HES Plus
instead puts all the directories’ entries together in one big B-tree. The keys in this tree
are formed by concatenating together the identifying number of the parent directory
with the name of the particular child file (or subdirectory). Thus, all the entries within
a single directory appear consecutively within the tree.

8.7 Metadata Integrity

When a system crashes, any data held in the volatile main memory (RAM) is lost.
In particular, any data that the file system was intending to write to disk, but was
temporarily buffering in RAM for performance reasons, is lost. This has rather different
implications depending on whether the lost data is part of what a user was writing into
a file or is part of the file system’s metadata:

e Some user data is noncritical, or can be recognized by a human as damaged and
therefore restored from a backup source. Other user data is critical and can be
explicitly flushed out to disk under control of the application program. For exam-
ple, when a relational database system is committing a transaction and needs to
ensure that all the log entries are on disk, it can use the POSIX API's £sync proce-
dure to force the operating system to write the log file to disk.

e If the last few metadata operations before a crash are cleanly lost in their entirety,
this can often be tolerated. However, users cannot tolerate a situation where a
crash in the middle of metadata updates results in damage to the integrity of
the metadata structures themselves. Without those structures to organize the disk
blocks into meaningtul files, the disk’s contents are just one big pile of bits. There
wouldn’t even be any individual files to check for damage.

Therefore, all file systems contain some mechanism to protect the integrity of meta-
data structures in the face of sudden, unplanned shutdowns. (More extreme hardware
failures are another question. If your machine room burns down, you better have an
off-site backup.)

Metadata integrity is threatened whenever a single logical transformation of the
metadata from one state to another is implemented by writing several individual
blocks to disk. For example, extending a file by one data block may require two meta-
data blocks be written to disk: one containing the inode (or indirect block) pointing
at the new data block and another containing the bitmap of free blocks, showing that
the allocated block is no longer free. If the system crashes when only one of these
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two updates has happened, the metadata will be inconsistent. Depending on which
update was written to disk, you will either have a lost block (no longer free, but not
part of the file either) or, more dangerously, a block that is in use, but also still “free”
for another file to claim.

Although having a block “free” while also in use is dangerous, it is not irreparable.
If a file system somehow got into this state, a consistency repair program could fix the
free block bitmap by marking the block as not free. By contrast, if the situation were to
progress further, to the point of the “free” block being allocated to a second file, there
would be no clean repair. Both files would appear to have equal rights to the block.

Based on the preceding example, I can distinguish three kinds of metadata integrity
violation: irreparable corruption, noncritical reparable corruption, and critical repara-
ble corruption. Irreparable corruption, such as two files using the same block, must be
avoided at all costs. Noncritical reparable corruption, such as a lost block, can be
repaired whenever convenient. Critical reparable corruption, such as a block that
is both in use and “free,” must be repaired before the system returns to normal
operation.

Each file system designer chooses a strategy for maintaining metadata integrity.
There are two basic strategies in use, each with two main variants:

e Fach logical change to the metadata state can be accomplished by writing a single
block to disk.

— The single block can be the commit record in a write-ahead log, as I discussed
in Section 5.4. Other metadata blocks may be written as well, but they will
be rolled back upon reboot if the commit record is not written. Thus, only the
writing of the commit block creates a real state change. This approach is known
as journaling.

— Alternatively, if the system always creates new metadata structures rather than
modifying existing ones, the single block to write for a state change is the one
pointing to the current metadata structure. This approach is known as shadow
paging.

e Fach logical change to the metadata state can be accomplished by writing multi-
ple blocks to disk. However, the order of the updates is carefully controlled so that
after a crash, any inconsistencies in the metadata will always be of the reparable
kind. A consistency repair program is run after each crash to restore the meta-
data’s integrity by detecting and correcting violations of the metadata structures’
invariant properties.

— The update order can be controlled by performing each metadata update as a
synchronous write. That is, the file system actually writes the updated metadata
block to disk immediately, rather than buffering the write in RAM for later.
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— The update order can be controlled by buffering the updated metadata blocks
in RAM for later writing, but with specific annotations regarding the depen-
dencies among them. Before writing a block to disk, the system must write the
other blocks upon which it depends. If the same blocks are updated repeatedly
before they are written to disk, cyclic dependencies may develop, necessitating
additional complications in the mechanism. This approach is known as using
soft updates.

The strategy of update ordering through synchronous writes was once quite pop-
ular. Linux’s ext2fs uses this approach, for example. However, performance consid-
erations have removed this approach from favor, and it is unlikely ever to return.
The problem is not only that synchronous writes slow normal operation. Far more
fatally, as typical file systems sizes have grown, the consistency repair process nec-
essary after each crash has come to take unacceptably long. Because synchronous
writes are expensive, even systems of this kind use them as sparingly as possible.
The result is that while all inconsistencies after a crash will be reparable, some may
be of the critical kind that need immediate repair. Thus, the time-consuming con-
sistency repair process must be completed before returning the crashed system to
service.

Contemporary file systems have almost all switched to the journaling strategy;
examples include Linux’s ext3fs, Microsoft Windows’ NTFS, and Mac OS X'’s HFS Plus.
After rebooting from a crash, the system must still do a little work to undo and redo
disk-block updates in accordance with the write-ahead log. However, this is much
faster, as it takes time proportional to the amount of activity logged since the last
checkpoint, rather than time proportional to the file system size.

Shadow paging remains a marginal player in the marketplace. One example is the
WAFL file system used in Network Appliance’s storage servers. Network Appliance’s
choice of this design was motivated primarily by the additional functionality shadow
paging provides. Because disk blocks are not overwritten, but rather superseded by new
versions elsewhere on disk, WAFL naturally supports snapshots, which keep track of
prior versions of the file system’s contents. Moreover, because Network Appliance was
designing entire hardware/software systems, they were able to work around some of
shadow paging’s difficulties. In particular, it seems to be much harder to get acceptable
performance from shadow paging if the disk is the only nonvolatile storage; Network
Appliance uses some battery-powered RAM. Still, there is more hope for shadow paging
than for either form of ordered updates (synchronous writes and soft updates). In some
future technological setting, shadow paging could conceivably challenge journaling
for dominance.
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The soft updates strategy is another marginal player, generally confined to the BSD
versions of UNIX. Its main selling point is that it provides a painless upgrade path from
old-fashioned synchronous writes. (The on-disk structure of the file system can remain
identical.) However, it shares the biggest problem of the synchronous write strategy,
namely, the need for post-crash consistency repair that takes time proportional to the
file system size.

Admittedly, soft updates somewhat ameliorate the problem of consistency repair.
Because soft updates can enforce update ordering restrictions more cheaply than syn-
chronous writes can, file systems using soft updates can afford to more tightly control
the inconsistencies possible after a crash. Whereas synchronous write systems ensure
only that the inconsistencies are reparable, soft update systems ensure that the incon-
sistencies are of the noncritical variety, safely reparable with the system up and run-
ning. Thus, time-consuming consistency repair need not completely hold up system
operation. Even still, soft updates are only a valiant attempt to make the best of an
intrinsically flawed strategy.

Because the only strategy of widespread use in contemporary designs is journaling,
which I discussed in Section 5.4, I will not go into further detail here. However, it is
important that you have a high-level understanding of the different strategies and
how they compare. If you were to go further and study the other strategies, you would
undoubtedly be a better-educated computer scientist. The notes section at the end
of this chapter suggests further reading on shadow paging and soft updates, as well
as on a hybrid of shadow paging and journaling that is known as a log-structured file
system.

8.8 Polymorphism in File System
Implementations

If you have studied modern programming languages, especially object-oriented ones,
you should have encountered the concept of polymorphism, that is, the ability of multi-
ple forms of objects to be treated in a uniform manner. A typical example of polymor-
phism is found in graphical user interfaces where each object displayed on the screen
supports such operations as “draw yourself” and “respond to the mouse being clicked
on you,” but different kinds of objects may have different methods for responding
to these common operations. A program can iterate down a list of graphical objects,
uniformly invoking the draw-yourself operation on each, without knowing what kind
each is or how it will respond.
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In contemporary operating systems, the kernel’s interface to file systems is also
polymorphic, that is, a common, uniformly invokable interface of operations that
can hide a diversity of concrete implementations. This polymorphic interface is often
called a virtual file system (VES). The VES defines a collection of abstract datatypes to rep-
resent such concepts as directory entry, file metadata, or open file. Each datatype sup-
ports a collection of operations. For example, from a directory entry, one can find the
associated file metadata object. Using that object, one can access or modity attributes,
such as ownership or protection. One can also use the file metadata object to obtain
an open file object, which one can then use to perform read or write operations. All of
these interface operations work seamlessly across different concrete file systems. If a
file object happens to belong to a file on an ext3fs file system, then the write operation
will write data in the ext3fs way; if the file is on an NTES file system, then the writing
will happen the NTFS way.

Operating systems are typically written in the C programming language, which
does not provide built-in support for object-oriented programming. Therefore, the
VES’s polymorphism needs to be programmed more explicitly. For example, in Lin-
ux’s VES, each open file is represented as a pointer to a structure (containing data
about the file) that in turn contains a pointer to a structure of file operations. This
latter structure contains a pointer to the procedure for each operation: one for how to
read, one for how to write, and so forth. As Figure 8.18 shows, invoking the polymor-
phic vEs_write operation on a file involves retrieving that file’s particular collection
of file operations (called £_op), retrieving the pointer to the particular write oper-
ation contained in that collection, and invoking it. This is actually quite similar to
how object-oriented programming languages work under the hood; in C, the mecha-
nism is made visible. (The vEs_write procedure writes a given count of bytes from
a buffer into a particular position in the file. This underlies the POSIX pwrite and
write procedures I described earlier.)

ssize_t vfs_write(struct file *file, const char *buf,
size_t count, loff t *pos){
ssize_t ret;

ret = file->f op->write(file, buf, count, pos):;
return ret;

Figure 8.18 Linux’s vEs_write procedure, shown here stripped of many details, uses pointers
to look up and invoke specific code for handling the write request.
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8.9 Security and Persistent Storage

When considering the security of a persistent storage system, it is critical to have a clear
model of the threats you want to defend against. Are you concerned about attackers
who will have access to the physical disk drive, or those who can be kept on the other
side of a locked door, at least until the drive is taken out of service? Do disclosures
after the fact matter, or do only contemporaneous ones matter? Will your adversaries
have sufficient motivation and resources to use expensive equipment? Are you con-
cerned about authorized users misusing their authorization, or are you concerned only
about outsiders? Are you concerned about attackers who have motivations to modify
or delete data, or only those whose motivation would be to breach confidentiality?

As I explained in Section 7.6, if unencrypted data is written to a disk drive and
an attacker has physical access to the drive, then software-based protection will do no
good. This leads to two options for the security conscious:

e Write only encrypted data to the disk drive, and keep the key elsewhere. This leads
to the design of cryptographic file systems, which automatically encrypt and decrypt
all data.

e Keep the attacker from getting at the drive. Use physical security such as locked
doors, alarm systems, and guards to keep attackers away. This needs to be cou-
pled with careful screening of all personnel authorized to have physical access,
especially those involved in systems maintenance.

Keeping security intact after the disk is removed from service raises further ques-
tions. Some data rapidly loses its value; for example, a company must closely guard
its earnings reports until they are made public but need not worry about them there-
after. Other data should be kept confidential even when the disk drive containing it
has served its useful life and is removed from operation. In this latter case, selling the
drives as scrap can be a very risky proposition, even if the files on them have been
deleted or overwritten.

File systems generally delete a file by merely updating the directory entry and
metadata to make the disk blocks that previously constituted the file be free for other
use. The data remains in the disk blocks until the blocks are reused. Thus, deletion
provides very little security against a knowledgeable adversary. Even if no trace remains
of the previous directory entry or metadata, the adversary can simply search through
all the disk blocks in numerical order, looking for interesting data.

Even overwriting the data is far from a sure thing. Depending on how the over-
writing is done, the newly written data may wind up elsewhere on disk than the
original, and hence not really obscure it. Even low-level software may be unable to
completely control this effect, because disk drives may transparently substitute one
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block for another. However, carefully repeated overwriting by low-level software that
enlists the cooperation of the disk drive controller can be effective against adversaries
who do not possess sophisticated technical resources or the motivation to acquire and
use them.

For a sophisticated adversary who is able to use magnetic force scanning tunnel-
ing microscopy, even repeatedly overwritten data may be recoverable. Therefore, the
best option for discarding a drive containing sensitive data is also the most straight-
forward: physical destruction. Even more straightforward, you could choose not to
discard obsolete drives and instead lock them up in a secure place.

Having talked about how hard it is to remove all remnants of data from a drive,
I now need to switch gears and talk about the reverse problem: data that is too eas-
ily altered or erased. Although magnetic storage is hard to get squeaky clean, if you
compare it with traditional paper records, you find that authorized users can make
alterations that are not detectable by ordinary means. If a company alters its account-
ing books after the fact, and those books are real books on paper, there will be visible
traces. On the other hand, if an authorized person within the company alters comput-
erized records, who is to know?

The specter of authorized users tampering with records opens up the whole area
of auditability and internal controls, which is addressed extensively in the accounting
literature. Recent corporate scandals have focused considerable attention on this area,
including the passage in the United States of the Sarbanes-Oxley Act, which mandates
tighter controls. As a result of implementing these new requirements, many compa-
nies are now demanding file systems that record an entire version history of each file,
rather than only the latest version. This leads to some interesting technical consider-
ations; the end-of-chapter notes provide some references on this topic. Among other
possibilities, this legal change may cause file system designers to reconsider the relative
merits of shadow paging and journaling.

Authorized users cooking the books are not the only adversaries who may wish to
alter or delete data. One of the most visible forms of attack by outsiders is vandalism, in
which files may be deleted wholesale or defaced with new messages (that might appear,
for example, on a public web site). Vandalism raises an important general point about
security: security consists not only in reducing the risk of a successful attack, but also
in mitigating the damage that a successful attack would do. Any organization with
a significant dependence on computing should have a contingency plan for how to
clean up from an attack by vandals.

Luckily, contingency planning can be among the most cost-effective forms of secu-
rity measures, because there can be considerable sharing of resources with planning
for other contingencies. For example, a backup copy of data, kept physically pro-
tected from writing, can serve to expedite recovery not only from vandalism and other
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security breaches, but also from operational and programming errors and even from
natural disasters, if the backup is kept at a separate location.

Exercises

8.1

8.2

8.3

8.4

8.5

8.6
8.7

8.8

8.9

In the introduction to this chapter, I gave an example of a database table, includ-
ing what the columns would be and what a typical row might contain. Give a
corresponding description for another example table of your own choosing.

Suppose the POSIX API didn’t use integer file descriptors, but rather required that
the character-string file name be passed to each procedure, such as mmap, read,
or write. Discuss advantages and disadvantages of this change.

Given that the POSIX API uses integer file descriptors, it clearly needs the open
procedure. But what about close? Discuss advantages and disadvantages for
eliminating close from the APIL

I mentioned that a defragmentation program rearranges files so that the free
space on the disk is contiguous. Consider my parallel-parking analogy for exter-
nal fragmentation, where as a result of smaller cars taking spots opened up by
larger ones, there may be enough total free space along a block for another car,
but no place that will accommodate the car. What would be the physical analog
of the defragmentation program’s action?

Defragmenting parking, as in Exercise 8.4, would make it harder for people to find
their cars. The same problem arises for files on disk, but computer programs are
not as flexible as people are. After defragmenting a disk, the file system must still
be able to unambiguously locate each file. How can a defragmentation program
arrange for that?

Describe in your own words the difference between a directory and an index.

The Spotlight search feature of Mac OS X can find files rapidly by using indexes.
However, this feature may have other undesirable consequences for system per-
formance. Based on the description in this chapter, what would you expect the
performance problem to be?

Show that if a file system uses 4-KB disk blocks and 128-MB block groups, the
bitmap for a block group fits within a single block.

Best-fit allocation sounds superior to first-fit, but in actuality, either may work
better. By placing a new allocation into the smallest workable space, best-fit
leaves the larger spaces for later. However, if the best fit is not an exact fit, but
only an extremely close one, the leftover space may be too small to be useful.
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Demonstrate these phenomena by creating two example sequences of extent
allocations and deallocations (using an unrealistically small disk), one in which
best-fit succeeds but first-fit at some point gets stuck, and the other in which
first-fit succeeds but best-fit gets stuck.

Assume an inode contains 12 direct block numbers, as well as single, double, and
triple indirect block numbers. Further, assume that each block is 4 KB, and that
each block number is 4 bytes. What is the largest a file can be without needing
to use the triple indirect block?

Draw two alternative “after” pictures for Figure 8.12 on page 299, one showing
what would happen if 7 were inserted instead of 16, and the other showing what
would happen if 10 were inserted instead of 16.

Using Figure 8.13 on page 300, translate the following file block numbers into
disk block numbers: 3, 9, 76, 251.

Insertion into a B-tree node that is full to its capacity of N always behaves the

same way, whether the node is a leaf or not. The node is split, with N/2 keys in

each new node, and the median key inserted into the parent node. The situation
with B*-trees is somewhat different. Insertions into leaf nodes use a variant rule.

You can work an example starting from Figure 8.13 on page 300. Assume that the

leaf nodes have room for up to four records of information, each describing one

extent, and that the nonleaf nodes have room for four keys and the associated
pointers to subtrees.

(a) Initially insert information about two 100-block extents, starting at file blocks
300 and 400, with respective starting disk blocks 3000 and 4000. These inser-
tions should make one of the leaf nodes full, but not yet require any splitting.

(b) Now insert another 100-block extent, with starting file block 500 and starting
disk block 5000. This should require splitting a leaf node. Because all records
of information about the extents need to remain in leaf nodes, you should put
two records in the first node resulting from the split, and three in the second.
Unlike with a pure B-tree, no information is removed from the leaf level and
relocated to the parent. However, you do insert into the parent a copy of one
of the keys (that is, one of the starting file block numbers). Which one?

I explained two different ways that Figure 8.15 on page 306 could arise: starting
with alpha or starting with beta. What would a third option be?

While I was co-authoring a previous book, a system administrator accidentally
deleted all our files and then admitted not having made backups for months.
(This system administrator no longer works for the college.) He immediately took
the drive out of service. Why was this a smart thing to do? What do you think
we then did to recover the files containing the book?
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2 Programming Projects

8.1

8.2

8.3

8.4

8.5

Modify the file-processes.cpp program from Figure 8.2 on page 277 to sim-
ulate this shell command:

tr a-z A-Z </etc/passwd

Read the documentation for the £stat procedure and modify the fstater.cpp
program of Figure 8.3 on page 278 to print out more comprehensive information.
You may want to incorporate some of the code from the stater.cpp program
of Figure 8.14 on page 302.

Write a program that opens a file in read-only mode and maps the entire file
into the virtual-memory address space using mmap. The program should search
through the bytes in the mapped region, testing whether any of them is equal
to the character X. As soon as an X is found, the program should print a success
message and exit. If the entire file is searched without finding an X, the program
should report failure. Time your program on files of varying size, some of which
have an x at the beginning, while others have an X only at the end or not at all.

You have seen that

(ls; ps) >information

puts both a listing of files and a listing of processes into information. Suppose
you have an executable program, . /mystery, such that

(ls; ./mystery; ps) >information

results in only the process listing being in information, without any list of files.
How might the program accomplish this? Write such a program.

Write a program in C or C++ that can be used to rename a file. However, rather
than using the rename procedure, your program should use 1ink and unlink.

¢ Exploration Projects
/

8.1

Section 8.2 makes at least eight quantitative claims about typical contemporary
disk drives. Use current literature to verify or update my values for each of the
quantities in the following list. Cite the sources you use. In general, the answers
need only be order of magnitude approximations.

(a) sector size

(b) sustained transfer rate with optimal access pattern

(c) sustained transfer rate with random accesses

(d) rotational speed

(e) proportion between head switch and single-track seek times
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(f) proportion between seek times for large and small seeks
(g) data transferable in time needed for a single-track seek
(h) proportion between rotation time and seek time for a large seek

Research and write a short paper on persistent storage technologies that were
used before moving-head magnetic disks. When and why did they fall out of
use?

Find historical examples of persistent storage technologies that were originally
expected to displace magnetic disks, but then failed to do so. Summarize what
happened in each case.

Find examples of persistent storage technologies other than magnetic disks that
are currently in use in specific niches. What makes them particularly suited to
those niches, but not to the broader application areas where magnetic disks are
used? Do they have performance characteristics sufficiently different from disks
to invalidate any of the design decisions presented in this chapter?

Find examples of experimental or proposed storage technologies that have been
suggested as possible future replacements for magnetic disks. Do they have per-
formance characteristics sufficiently different from disks to invalidate any of the
design decisions presented in this chapter?

UNIX and Linux file systems generally place ordinary files near their parent direc-
tory, and, with the introduction of the new Orlov allocator, even often place sub-
directories near the parent directory. You can find out how important these forms
of locality are by modifying Linux’s ext2 or ext3 file system to scatter the files and
directories across the disk and then measuring how much worse the performance
gets. (Ext3 is used more today, but ext2 might provide results that are simpler to
understand because there would be no journaling activity to factor in.)

The Linux source file fs/ext2/ialloc.c (or fs/ext3/ialloc.c) contains
a procedure ext2_new_inode (Or ext3_new_inode). Near the top of this pro-
cedure, you will find code that calls £ind_group_dir, £ind group_orlov, Or
find group_other in order to select a block group for the new inode.
Normal files always use £ind group_other, which tries to place the file in
the same block group as its parent directory. Depending on an option selec-
tion, directories either use the new Orlov allocator or the old £ind_group_dir,
which tended to spread directories more widely. (This difference is discussed in
Section 8.4.3.)

Change the code to always use £ind_group_dir, whether the inode is for a
subdirectory or not, and irrespective of option settings. Build a kernel with this
modified code. You should set your system up so that you can boot either the
normal kernel or the modified one. (Make sure that there is no other difference
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between your two kernels. This implies you should have built the normal kernel
yourself as well.)

Repeatedly reboot the system with one kernel or the other, and each time do
a timing test such as unpacking a software distribution and then removing it.

Write a report in which you explain what you did, and the hardware and soft-
ware system context in which you did it, carefully enough that someone could
replicate your results. How large a performance difference do you find between
the two kernels? Is the difference consistent enough, across enough trials, to not
to be explainable as chance?

Find, or generate yourself, some data showing the performance impact of Mac
OS X’s hot file clustering feature. Report these results and summarize how hot file
clustering works. (Be sure not to plagiarize: cite your sources, and don’t follow
them too closely.)

If you have a Linux or Mac OS X system, read the documentation for debugfs
or hfsdebug, respectively, and use that tool to examine the structure of a file
system. (Linux systems generally include debugfs, whereas for Mac OS X, you
will need to download the third-party hfsdebug from the web.) At a minimum,
report for each of several files how many disk blocks are used to store the file, how
many extents those disk blocks constitute, and how densely packed together the
extents are on disk. As a measure of density, you can divide the number of disk
blocks by one more than the difference between the highest and lowest block
numbers.

On a POSIX system (such as Linux or Mac OS X), read the documentation for
1n and then show how by using it you can create the situation of Figure 8.15
on page 306 using shell commands, without needing to write a custom program.
What does the output from 1s -1 show after you have done this? Next, use rm
to remove beta, and then re-create it with different content. What does 1s -1
show afterward? Does alpha have the old or new content?

On a POSIX system (such as Linux or Mac OS X), demonstrate a program contin-
uing to make use of an open file after all names for that file have been removed.
You can remove the names using rm in a shell, rather than needing to write
a program that uses unlink. Similarly, the program using the file can be an
existing program such as cat or tail—no programming is needed. Make sure,
however, that the program actually reads or writes the file after the names are
removed, rather than just continuing to use data it has in memory that it read
from the file previously. You may find this easiest if you have not one but two pro-
grams concurrently making use of the file: one writing to it and the other reading
from it.



hailperin-163001 book October 18, 2005 11:22

322 P Chapter 8 Files and Other Persistent Storage

8.11 On a POSIX system (such as Linux or Mac OS X), read the documentation for
1n and then show how by using it you can create the situation of Figure 8.17
on page 307 using shell commands, without needing to write a custom program.
What does the output from 1s -1 show after you have done this? Next, use rm
to remove beta, and then re-create it with different content. What does 1s -1
show afterward? Does alpha have the old or new content?

8.12 You have seen two forms of links: symbolic links and hard links. UNIX originally
had only one of these; the other was added later. Research the history of UNIX to
find out which kind was the original. Moreover, UNIX was based on the earlier
Multics system, which only offered one kind of link. Research Multics to find out
which kind it offered. Was it the same as UNIX's original kind?

8.13 Even though journaling file systems do not need to run a consistency repair
program after each crash, they normally have a consistency repair program avail-
able anyway. Speculate on why this might be useful, then see if your expla-
nation matches the one in the article about XFS cited in the end-of-chapter
notes.

Notes

In this chapter, | have assumed the use of a single disk; disk arrays and volume man-
agers introduce another layer of interesting questions. The most popular form of disk
array is a RAID; see the survey by Chen et al. [27]. For an interesting example of
using an adaptive policy to manage RAIDs, see the paper by Wilkes et al. on HP's
AutoRAID [135].

Two accessible tutorials on disk technology and performance are those by
Anderson [4] and by Anderson, Dykes, and Riedel [5]. These articles also quantify the
performance benefits that can be gained by queuing multiple requests with a disk con-
troller and allowing its internal scheduler to process the requests in an appropriate
order.

For more complete information on the POSIX API, see http://www.opengroup.org/.
For the original UNIX API from which POSIX evolved (as did later UNIX versions,
for that matter), see the 1974 article by Ritchie and Thompson [104]. That paper also
sketches the internal structure of the initial UNIX file system. Other specific file sys-
tems I mentioned include NTES [109], HFS Plus [7], XFES [124], and WAFL [68].

Internal and external fragmentation were distinguished in a 1969 article by
Randell [102]. The conclusions reached in that paper were quickly called into ques-
tion, but the vocabulary it introduced has become standard.
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Orlov’s heuristic for where to allocate directories has been mostly documented in
source code, posts to email lists, and so forth. Moreover, there have been multiple vari-
ants; the “Orlov allocator” included in Linux’s ext3fs is not quite what Orlov proposed.
The closest to a published version of Orlov’s work is his web site, http://www.ptci.ru/gluk/
dirpref/old/dirpref.html. Many other allocation ideas go back much further; the classic
work, which includes a comparison of best-fit and first-fit allocation, is by Knuth [81].

I mentioned that the analogs of inodes in Microsoft’s NTES are large enough to
contain the entire extent maps for most files. In the rare case that the extent map does
not fit in a single 1-KB record, NTFS expands the metadata into multiple 1-KB records,
but unlike other file systems, it continues to use a linear extent map rather than a
Bt-tree.

B-trees were introduced by Bayer and McCreight [10]. A later survey by Comer [33]
explained the B*-tree variant.

Two historical file systems well worth studying are those from Multics [37] and
TENEX [22]. The Multics system originated hierarchical directories. One of TENEX's
important innovations was automatic versioning of files. Versioning was incorporated
into several other systems, but because neither UNIX nor NTEFS included it, this feature
faded from prominence. A recent upsurge in concern for auditability has helped bring
versioning back to the fore. Some interesting related papers include those by Santry
et al. [112], by Quinlan and Dorward [101], and by Soules et al. [120].

Regarding alternatives to journaling, the WAFL paper cited previously provides
a good example of shadow paging. Soft updates are presented by Ganger et al. [54].
Rosenblum and Ousterhout’s design for a log-structured file system (LFS) [106] essen-
tially amounts to a shadow-paging scheme, because new versions of data and metadata
blocks occupy previously free locations on disk, rather than overwriting the prior ver-
sions. However, LFS also has some commonality with journaling file systems, in that
the written blocks constitute a log.

Gutmann [61] provides information on how hard it is to truly delete data from
a disk.



