
!"#$%&'()*+,-&#.-*%(/*0'//1#2%$#3*+4""5$&'()*65(&$511#/*7(&#$%8&'5(

9,*0%:*;%'1"#$'(

<=#*85..#$8'%11,*"491'-=#/*>#$-'5(*5?*&='-*25$@*A7+BC*DEFGHEHIGJKELM*2%-*65",$')=&*N*IDDO*9,*<=5.-5(*654$-#*

<#8=(515),P*%*/'>'-'5(*5?*<=5.-5(*Q#%$('()P*7(8RP*"4$-4%(&*&5*%(*%--')(.#(&*5?*$')=&-*?$5.*&=#*%4&=5$R

<='-*?$##*$#E$#1#%-#*'-*65",$')=&*N*IDDFEIDSD*9,*0%:*;%'1"#$'(P*"4$-4%(&*&5*%(*%--')(.#(&*5?*&=#*$')=&-*9%8@*&5*='.*9,*

654$-#*<#8=(515),P*%*/'>'-'5(*5?*6#()%)#*Q#%$('()P*7(8RP*-488#--5$E'(E'(&#$#-&*&5*&=#*"491'-=#$R**T')=&-*&5*'114-&$%&'5(-*

$#(/#$#/*9,*&=#*"491'-=#$*2#$#*%1-5*%--')(#/*9,*654$-#*<#8=(515),*&5*0%:*;%'1"#$'(*%(/*&=5-#*'114-&$%&'5(-*%$#*'(814/#/*'(*

&=#*1'8#(-#*=#*)$%(&-*?5$*&='-*?$##*$#E$#1#%-#R

<='-*25$@*'-*1'8#(-#/*4(/#$*&=#*6$#%&'>#*65..5(-*U&&$'94&'5(E+=%$#U1'@#*GRD*V('&#/*+&%&#-*Q'8#(-#R*<5*>'#2*%*85",*5?*&='-*

1'8#(-#P*>'-'&*=&&"3WW8$#%&'>#85..5(-R5$)W1'8#(-#-W9,E-%WGRDW4-W*5$*-#(/*%*1#&&#$*&5*6$#%&'>#*65..5(-P*SOS*+#85(/*+&$##&P*

+4'&#*GDDP*+%(*X$%(8'-85P*6%1'?5$('%P*KHSDFP*V+UR

<=#*?$##*$#E$#1#%-#*2%-*"$#"%$#/*?$5.*?'(%1*"%)#*"$55?-*%(/*-=541/*9#*85."1#,*'/#(&'8%1*&5*&=#*85..#$8'%11,*"491'-=#/ *

>#$-'5(R**7(*"%$&'841%$P*%11*&=#*#$$%&%*1'-&#/*5(*&=#*2#9*-'&#*-&'11*%""1,R**A<=#*%4&=5$*'(&#(/-*&5*$#1#%-#*-49-#Y4#(&*>#$-'5(-*&=%& *

'(85$"5$%&#*&=#*85$$#8&'5(-*%-*2#11*%-*4"/%&#-*%(/*'."$5>#.#(&-R**+49-#Y4#(&*>#$-'5(-*.%,*%1-5*9#*'(*%*.5$#*#%-'1, *

.5/'?'%91#*?5$.*&5*#(854$%)#*"%$&'8'"%&'5(*9,*5&=#$*85(&$'94&5$-R**Z1#%-#*#.%'1*-4))#-&'5(-*&5*.%:[)4-&%>4-R#/4RM

6$#/'&-*?$5.*&=#*85..#$8'%11,*"491'-=#/*>#$-'5(3

+#('5$*Z$5/48&*0%(%)#$3*U1,--%*Z$%&&

0%(%)'()*\/'&5$3*0%$,*X$%(]

^#>#15".#(&*\/'&5$3*_'11*B%&'-&'8@

+#('5$*0%$@#&'()*0%(%)#$3*`%$#(*+#'&]

U--58'%&#*Z$5/48&*0%(%)#$3*_#(('?#$*+.'&=

\/'&5$'%1*U--'-&%(&3*U11'-5(*04$"=,

+#('5$*0%(4?%8&4$'()*655$/'(%&5$3*_4-&'(*Z%1.#'$5

65>#$*^#-')(#$3*^#95$%=*a%(T55,#(

65."5-'&5$3*7(&#$%8&'>#*65."5-'&'5(*65$"5$%&'5(

hailperin-163001 book December 2, 2005 12:39

Virtual Memory

C H A P T E R

6

6.1 Introduction
In Chapters 4 and 5, you have seen that synchronization (including transactions) can
control the interactions between concurrent threads. For example, synchronization
can ensure that only one thread at a time updates the memory locations holding a
shared data structure. Now you will learn about another form of control, which can
provide each thread with its own private storage, rather than regulating the threads’
access to shared storage.

In this chapter, I will present a mechanism, virtual memory, that can be used to
provide threads with private storage, thereby controlling their interaction. However,
virtual memory turns out to be a very general-purpose abstraction, useful for many
goals other than just giving threads some privacy. Therefore, after using this introduc-
tory section to present the basic concept of virtual memory, I will devote Section 6.2 to
surveying the applications of virtual memory. Only afterward will I turn to the details
of mechanisms and policies; you’ll find the related discussions in Sections 6.3 and 6.4.
The chapter concludes with the standard features: security issues in Section 6.5, then
exercises, programming and exploration projects, and notes.

The essence of virtual memory is to decouple the addresses that running programs
use to identify objects from the addresses that the memory uses to identify storage

! 165 "

hailperin-163001 book December 2, 2005 12:39

166 ! Chapter 6 Virtual Memory

Processor Memory

address

data

Figure 6.1 In a system without virtual memory, the processor sends addresses directly to the
memory.

locations. The former are known as virtual addresses and the latter as physical addresses.
As background for understanding this distinction, consider first a highly simplified
diagram of a computer system, without virtual memory, as shown in Figure 6.1. In
this system, the processor sends an address to the memory whenever it wants to store
a value into memory or load a value from memory. The data being loaded or stored
is also transferred in the appropriate direction. Each load operation retrieves the most
recent value stored with the specified address. Even though the processor and memory
are using a common set of addresses to communicate, the role played by addresses is
somewhat different from the perspective of the processor than from the perspective
of the memory, as I will now explain.

From the perspective of the processor (and the program the processor is executing),
addresses are a way of differentiating stored objects from one another. If the processor
stores more than one value, and then wishes to retrieve one of those values, it needs to
specify which one should be retrieved. Hence, it uses addresses essentially as names.
Just as an executive might tell a clerk to “file this under ‘widget suppliers’ ” and then
later ask the clerk to “get me that document we filed under ‘widget suppliers’,” the
processor tells the memory to store a value with a particular address and then later
loads from that address. Addresses used by executing programs to refer to objects are
known as virtual addresses.

Of course, virtual addresses are not arbitrary names; each virtual address is a num-
ber. The processor may make use of this to give a group of related objects related names,
so that it can easily compute the name of any object in the group. The simplest exam-
ple of this kind of grouping of related objects is an array. All the array elements are
stored at consecutive virtual addresses. That allows the virtual address of any individ-
ual element to be computed from the base virtual address of the array and the element’s
position within the array.

From the memory’s perspective, addresses are not identifying names for objects,
but rather are spatial locations of storage cells. The memory uses addresses to deter-
mine which cells to steer the data into or out of. Addresses used by the memory to
specify storage locations are known as physical addresses. Figure 6.2 shows the proces-
sor’s and memory’s views of addresses in a system like that shown in Figure 6.1, where

hailperin-163001 book December 2, 2005 12:39

6.1 Introduction ! 167

Processor

0 !

1 !

2 !

Memory

0 1 2

Figure 6.2 In a system without virtual memory, virtual addresses (the processor’s names for
objects) equal physical addresses (the memory’s storage locations).

Processor Memory

0 1 2 3 4 50 !

1 !

2 !

0 !

1 !

2 !

Process A Process B

Figure 6.3 When two processes each use the same virtual addresses as names for their own
objects, the virtual addresses cannot equal the physical addresses, because each process’s objects
need to be stored separately.

the physical addresses come directly from the virtual addresses, and so are numerically
equal.

The difference between the processor’s and memory’s perspectives becomes appar-
ent when you consider that the processor may be dividing its time between multiple
computational processes. Sometimes the processes will each need a private object, yet
the natural name to use will be the same in more than one process. Figure 6.3 shows
how this necessitates using different addresses in the processor and the memory. That
is, virtual addresses can no longer be equal to physical addresses. To make this work,
general-purpose computers are structured as shown in Figure 6.4. Program execution
within the processor works entirely in terms of virtual addresses. However, when a
load or store operation is executed, the processor sends the virtual address to an inter-
mediary, the memory management unit (MMU). The MMU translates the virtual address
into a corresponding physical address, which it sends to the memory.

In Figure 6.3, each process uses the virtual address 0 as a name for its own triangle.
This is a simplified model of how more complicated objects are referenced by real proc-
esses. Consider next a more realistic example of why each process might use the same
virtual addresses for its own objects. Suppose several copies of the same spreadsheet

hailperin-163001 book December 2, 2005 12:39

168 ! Chapter 6 Virtual Memory

Processor Memory

MMU

data

virtual
address

physical
address

Figure 6.4 The memory management unit (MMU) translates the processor’s virtual addresses into
the memory’s physical addresses.

program are running. Each copy will naturally want to refer to “the spreadsheet,” but
it should be a different spreadsheet object in each process. Even if each process uses a
numerical name (that is, a virtual address), it would be natural for all running instances
of the spreadsheet program to use the same address; after all, they are running the same
code. Yet from the memory’s perspective, the different processes’ objects need to be
stored separately—hence, at different physical addresses.

The same need for private names arises, if not quite so strongly, even if the concur-
rent processes are running different programs. Although in principle each application
program could use different names (that is, virtual addresses) from all other programs,
this requires a rather unwieldy amount of coordination.

Even for shared objects, addresses as names behave somewhat differently from
addresses as locations. Suppose two processes are communicating via a shared bounded
buffer; one is the producer, while the other is the consumer. From the perspective of
one process, the buffer is the “output channel,” whereas for the other process, it is the
“input channel.” Each process may have its own name for the object; yet, the memory
still needs to store the object in one location. This holds true as well if the names used
by the processes are numerical virtual addresses.

Thus, once again, virtual addresses and physical addresses should not be forced to
be equal; it should be possible for two processes to use the same virtual address to refer
to different physical addresses or to use different virtual addresses to refer to the same
physical address.

You have seen that the MMU maps virtual addresses to physical addresses. How-
ever, I have not yet discussed the nature of this mapping. So far as anything up to this
point goes, the mapping could be as simple as computing each physical address as
twice the virtual address. However, that would not yield the very general mechanism
known as virtual memory. Instead, virtual memory must have the following additional
properties:

• The function that maps virtual addresses to physical addresses is represented by
a table, rather than by a computational rule (such as doubling). That way, the
mapping can be much more general.

hailperin-163001 book December 2, 2005 12:39

6.1 Introduction ! 169

• However, to keep its size manageable, the table does not independently list a phys-
ical address for each virtual address. Instead, the virtual addresses are grouped
together into blocks known as pages, and the table shows for each page of vir-
tual addresses the corresponding page frame of physical addresses. I’ll explain this
in greater detail in Section 6.3. In that same section, I also briefly consider an
alternative, segmentation.

• The contents of the table are controlled by the operating system. This includes
both incremental adjustments to the table (for purposes you will see in Section 6.2)
and wholesale changes of the table when switching between threads. The latter
allows each thread to have its own private virtual address space, in which case,
the threads belong to different processes, as explained in Section 6.2.1.

• The table need not contain a physical address translation for every page of vir-
tual addresses; in effect, some entries can be left blank. These undefined virtual
addresses are illegal for the processor to use. If the processor generates an illegal
address, the MMU interrupts the processor, transferring control to the operating
system. This interrupt is known as a page fault. This mechanism serves not only
to limit the usable addresses but also to allow address translations to be inserted
into the table only when needed. By creating address translations in this demand-
driven fashion, many applications of virtual memory arrange to move data only
when necessary, thereby improving performance.

• As a refinement of the notion of illegal addresses, some entries in the table may
be marked as legal for use, but only in specific ways. Most commonly, it may be
legal to read from some particular page of virtual addresses but not to write into
that page. The main purpose this serves is to allow trouble-free sharing of memory
between processes.

In summary, then, virtual memory consists of an operating system–defined table
of mappings from virtual addresses to physical addresses (at the granularity of pages),
with the opportunity for intervention by the operating system on accesses that the
table shows to be illegal. You should be able to see that this is a very flexible mecha-
nism. The operating system can switch between multiple views of the physical mem-
ory. Parts of physical memory may be completely invisible in some views, because no
virtual addresses map to those physical addresses. Other parts may be visible in more
than one view, but appearing at different virtual addresses. Moreover, the mappings
between virtual and physical addresses need not be established in advance. By marking
pages as illegal to access, and then making them available when an interrupt indicates
that they are first accessed, the operating system can provide mappings on a demand-
driven basis. In Section 6.2, you will see several uses to which this general mechanism
can be put.

hailperin-163001 book December 2, 2005 12:39

170 ! Chapter 6 Virtual Memory

6.2 Uses for Virtual Memory
This section contains a catalog of uses for virtual memory, one per subsection. The
applications of virtual memory enumerated are all in everyday use in most general-
purpose operating systems. A comprehensive list would be much longer and would
include some applications that have thus far been limited to research systems or other
esoteric settings.

6.2.1 Private Storage
The introductory section of this chapter has already explained that each computation
running on a computer may want to have its own private storage, independent of the
other computations that happen to be running on the same computer. This goal of
private storage can be further elaborated into two subgoals:

• Each computation should be able to use whatever virtual addresses it finds most
convenient for its objects, without needing to avoid using the same address as
some other computation.

• Each computation’s objects should be protected from accidental (or malicious)
access by other computations.

Both subgoals—independent allocation and protection—can be achieved by giving the
computations their own virtual memory mappings. This forms the core of the process
concept.

A process is a group of one or more threads with an associated protection context. I
will introduce processes more fully in Chapter 7. In particular, you will learn that the
phrase “protection context” is intentionally broad, including such protection features
as file access permissions, which you will study in Chapters 7 and 8. For now, I will
focus on one particularly important part of a process’s context: the mapping of virtual
addresses to physical addresses. In other words, for the purposes of this chapter, a
process is a group of threads that share a virtual address space.

As I will describe in Chapter 7, the computer hardware and operating system soft-
ware collaborate to achieve protection by preventing any software outside the operat-
ing system from updating the MMU’s address mapping. Thus, each process is restricted
to accessing only those physical memory locations that the operating system has allo-
cated as page frames for that process’s pages. Assuming that the operating system allo-
cates different processes disjoint portions of physical memory, the processes will have
no ability to interfere with one another. The physical memory for the processes need

hailperin-163001 book December 2, 2005 12:39

6.2 Uses for Virtual Memory ! 171

only be disjoint at each moment in time; the processes can take turns using the same
physical memory.

This protection model, in which processes are given separate virtual address spaces,
is the mainstream approach today; for the purposes of the present chapter, I will take
it for granted. In Chapter 7, I will also explore alternatives that allow all processes to
share a single address space and yet remain protected from one another.

6.2.2 Controlled Sharing
Although the norm is for processes to use disjoint storage, sometimes the operating
system will map a limited portion of memory into more than one process’s address
space. This limited sharing may be a way for the processes to communicate, or it may
simply be a way to reduce memory consumption and the time needed to initialize
memory. Regardless of the motivation, the shared physical memory can occupy a dif-
ferent range of virtual addresses in each process. (If this flexibility is exercised, the
shared memory should not be used to store pointer-based structures, such as linked
lists, because pointers are represented as virtual addresses.)

The simplest example of memory-conserving sharing occurs when multiple proc-
esses are running the same program. Normally, each process divides its virtual address
space into two regions:

• A read-only region holds the machine language instructions of the program, as
well as any read-only data the program contains, such as the character strings
printed for error messages. This region is conventionally called the text of the
program.

• A read/write region holds the rest of the process’s data. (Many systems actually use
two read/write regions, one for the stack and one for other data.)

All processes running the same program can share the same text. The operating system
maps the text into each process’s virtual memory address space, with the protection
bits in the MMU set to enforce read-only access. That way, the shared text does not
accidentally become a communication channel.

Modern programs make use of large libraries of supporting code. For example,
there is a great deal of code related to graphical user interfaces that can be shared
among quite different programs, such as a web browser and a spreadsheet. There-
fore, operating systems allow processes to share these libraries with read-only pro-
tection, just as for main programs. Microsoft refers to shared libraries as dynamic-link
libraries (DLLs).

hailperin-163001 book December 2, 2005 12:39

172 ! Chapter 6 Virtual Memory

Program 1
text

Program 2
text

DLL 1
text

DLL 2
text

DLL 3
text

Process A’s
writeable
storage

Process B’s
writeable
storage

Process C’s
writeable
storage

Process D’s
writeable
storage

Process A Process B Process C Process D

Figure 6.5 The address space of a process includes the text of the program the process is running,
the text of any DLLs used by that program, and a writable storage area for data. Because processes
A and B are both running program 1, which uses DLLs 1 and 2, their address spaces share these
components. Processes C and D are running program 2, which uses DLLs 1 and 3. Because both
programs use DLL 1, all four processes share it.

Figure 6.5 illustrates how processes can share in read-only form both program text
and the text of DLLs. In this figure, processes A and B are running program 1, which
uses DLLs 1 and 2. Processes C and D are running program 2, which uses DLLs 1
and 3. Each process is shown as encompassing the appropriate program text, DLLs,
and writable data area. In other words, each process encompasses those areas mapped
into its virtual address space.

From the operating system’s perspective, the simplest way to support interprocess
communication is to map some physical memory into two processes’ virtual address
spaces with full read/write permissions. Then the processes can communicate freely;
each writes into the shared memory and reads what the other one writes. Figure 6.6
illustrates this sharing of a writable area of memory for communication.

Simple as this may be for the operating system, it is anything but simple for
the application programmers. They need to include mutexes, readers-writers locks,
or some similar synchronization structure in the shared memory, and they need to
take scrupulous care to use those locks. Otherwise, the communicating processes will
exhibit races, which are difficult to debug.

hailperin-163001 book December 2, 2005 12:39

6.2 Uses for Virtual Memory ! 173

Communication
area

(shared, writeable
storage)

Process A’s
private
storage

Process B’s
private
storage

Process A Process B

Figure 6.6 Two processes can communicate by sharing a writable storage area.

Therefore, some operating systems (such as Mac OS X) use virtual memory to sup-
port a more structured form of communication, known as message passing, in which
one process writes a message into a block of memory and then asks the operating sys-
tem to send the message to the other process. The receiving process seems to get a
copy of the sent message. For small messages, the operating system may literally copy
the message from one process’s memory to the other’s. For efficiency, though, large
messages are not actually copied. Instead, the operating system updates the receiver’s
virtual memory map to point to the same physical memory as the sender’s message;
thus, sender and receiver both have access to the message, without it being copied.
To maintain the ease of debugging that comes from message passing, the operating
system marks the page as read-only for both the sender and the receiver. Thus, they
cannot engage in any nasty races. Because the sender composes the message before
invoking the operating system, the read-only protection is not yet in place during
message composition and so does not stand in the way.

As a final refinement to message passing by read-only sharing, systems such as
Mac OS X offer copy on write (COW). If either process tries to write into the shared
page, the MMU will use an interrupt to transfer control to the operating system. The
operating system can then make a copy of the page, so that the sender and receiver
now have their own individual copies, which can be writable. The operating system
resumes the process that was trying to write, allowing it to now succeed. This provides
the complete illusion that the page was copied at the time the message was sent, as
shown in Figure 6.7. The advantage is that if the processes do not write into most
message pages, most of the copying is avoided.

hailperin-163001 book December 2, 2005 12:39

174 ! Chapter 6 Virtual Memory

Modifiable copy
of message

that was sent

Process A’s
other

storage

Modifiable copy
of message that

was received

Process B’s
other

storage

Process A Process B

Step 1

Step 3

Step 2

Message being
written

Process A’s
other

storage
Process B’s

storage

Process A Process B

Message after
being sent

(shared, read-only)

Process A’s
other

storage

Process B’s
other

storage

Process A Process B

Figure 6.7 To use copy on write (COW) message passing, process A writes a message into part
of its private memory (Step 1) and then asks the operating system to map the memory containing
the message into process B’s address space as well (Step 2). Neither process has permission to
write into the shared area. If either violates this restriction, the operating system copies the affected
page, gives each process write permission for its own copy, and allows the write operation to proceed
(Step 3). The net effect is the same as if the message were copied when it was sent, but the copying
is avoided if neither process writes into the shared area.

6.2.3 Flexible Memory Allocation
The operating system needs to divide the computer’s memory among the various proc-
esses, as well as retain some for its own use. At first glance, this memory allocation
problem doesn’t seem too difficult. If one process needs 8 megabytes (MB) and another
needs 10, the operating system could allocate the first 8 MB of the memory (with the
lowest physical addresses) to the first process and the next 10 MB to the second. How-
ever, this kind of contiguous allocation runs into two difficulties.

hailperin-163001 book December 2, 2005 12:39

6.2 Uses for Virtual Memory ! 175

Process A Process B Process C

128 MB 256 MB 128 MB

Process B

128 MB 256 MB 128 MB

Where does Process D go?

256 MB

Figure 6.8 Contiguous allocation leads to external fragmentation. In this example, there is no con-
tiguous 256-MB space available for process D, even though the termination of processes A and C
has freed up a total of 256 MB.

The first problem with contiguous allocation is that the amount of memory that
each process requires may grow and shrink as the program runs. If the first process
is immediately followed in memory by the second process, what happens if the first
process needs more space?

The second problem with contiguous allocation is that processes exit, and new
processes (with different sizes) are started. Suppose you have 512 MB of memory avail-
able and three processes running, of sizes 128 MB, 256 MB, and 128 MB. Now suppose
the first and third processes terminate, freeing up their 128-MB chunks of memory.
Suppose a 256-MB process now starts running. There is enough memory available, but
not all in one contiguous chunk, as illustrated in Figure 6.8. This situation is known
as external fragmentation. I will discuss external fragmentation more carefully in Chap-
ter 8, because contiguous allocation is important for disk space. (I will also define the
contrasting term, internal fragmentation, in that same chapter.)

Because all modern general-purpose systems have virtual memory, these contigu-
ous allocation difficulties are a non-issue for main memory. The operating system can
allocate any available physical page frames to a process, independent of where they
are located in memory. For example, the conundrum of Figure 6.8 could be solved as

hailperin-163001 book December 2, 2005 12:39

176 ! Chapter 6 Virtual Memory

Process D
first half Process B Process D

second half

256 MB 128 MB128 MB

Figure 6.9 With virtual memory, the physical memory allocated to a process need not be contigu-
ous, so process D can be accommodated even without sufficient memory in any one place.

shown in Figure 6.9. In a more realistic setting, it would be surprising for the pattern
of physical memory allocation to display even this degree of contiguity. However, the
virtual addresses can be contiguous even if the physical addresses are scattered all over
the memory.

6.2.4 Sparse Address Spaces
Just as virtual memory provides the operating system with flexibility in allocating
physical memory space, it provides each application program (or process) with flexi-
bility in allocating virtual address space. A process can use whatever addresses make
sense for its data structures, even if there are large gaps between them. This provides
flexibility for the compiler and runtime environment, which assign addresses to the
data structures.

Suppose, for example, that a process has three data structures (S1, S2, and S3) that
it needs to store. Each needs to be allocated in a contiguous range of addresses, and
each needs to be able to grow at its upper end. The picture might look like this, with
addresses in megabytes:

S1 free S2 free S3 free

0 2 6 8 12 14 18

In this example, only one third of the 18-MB address range is actually occupied. If you
wanted to allow each structure to grow more, you would have to position them further
apart and wind up with an even lower percentage of occupancy. Many real processes
span an address range of several gigabytes without using anywhere near that much
storage. (Typically, this is done to allow one region to grow up from the bottom of the
address space and another to grow down from the top.)

hailperin-163001 book December 2, 2005 12:39

6.2 Uses for Virtual Memory ! 177

In order to allow processes to use this kind of sparse address space without wastefully
occupying a corresponding amount of physical memory, the operating system simply
doesn’t provide physical address mappings for virtual addresses in the gaps.

6.2.5 Persistence
Any general-purpose operating system must provide some way for users to retain
important data even if the system is shut down and restarted. Most commonly, the
data is kept in files, although other kinds of persistent objects can be used. The per-
sistent objects are normally stored on disk. For example, as I write this book, I am
storing it in files on disk. That way, I don’t have to retype the whole book every time
the computer is rebooted. I will consider persistence in more detail in Chapter 8; for
now, the only question is how it relates to virtual memory.

When a process needs to access a file (or other persistent object), it can ask the
operating system to map the file into its address space. The operating system doesn’t
actually have to read the whole file into memory. Instead, it can do the reading on a
demand-driven basis. Whenever the process accesses a particular page of the file for
the first time, the MMU signals a page fault. The operating system can respond by
reading that page of the file into memory, updating the mapping information, and
resuming the process. (For efficiency reasons, the operating system might choose to
fetch additional pages at the same time, on the assumption they are likely to be needed
soon. I discuss this possibility in Section 6.4.1.)

If the process writes into any page that is part of a mapped file, the operating
system must remember to write the page back to disk, in order to achieve persistence.
For efficiency, the operating system should not write back pages that have not been
modified since they were last written back or since they were read in. This implies the
operating system needs to know which pages have been modified and hence are not
up to date on disk. (These are called dirty pages.)

One way to keep track of dirty pages, using only techniques I have already dis-
cussed, is by initially marking all pages read-only. That way, the MMU will generate
an interrupt on the first attempt to write into a clean page. The operating system can
then make the page writable, add it to a list of dirty pages, and allow the operation
to continue. When the operating system makes the page clean again, by writing it to
disk, it can again mark the page read-only.

Because keeping track of dirty pages is such a common requirement and would be
rather inefficient using the approach just described, MMUs generally provide a more
direct approach. In this approach, the MMU keeps a dirty bit for each page. Any write

hailperin-163001 book December 2, 2005 12:39

178 ! Chapter 6 Virtual Memory

into the page causes the hardware to set the dirty bit without needing operating system
intervention. The operating system can later read the dirty bits and reset them. (The
Intel Itanium architecture contains a compromise: the operating system sets the dirty
bits, but with some hardware support. This provides the flexibility of the software
approach without incurring so large a performance cost.)

6.2.6 Demand-Driven Program Loading
One particularly important case in which a file gets mapped into memory is when
running a program. Each executable program is ordinarily stored as a file on disk.
Conceptually, running a program consists of reading the program into memory from
disk and then jumping to the first instruction.

However, many programs are huge and contain parts that may not always be used.
For example, error handling routines will get used only if the corresponding errors
occur. In addition, programs often support more features and optional modes than
any one user will ever need. Thus, reading in the whole program is quite inefficient.

Even in the rare case that the whole program gets used, an interactive user might
prefer several short pauses for disk access to one long one. In particular, reading in
the whole program initially means that the program will be slow to start, which is
frustrating. By reading in the program incrementally, the operating system can start it
quickly at the expense of brief pauses during operation. If each of those pauses is only
a few tens of milliseconds in duration and occurs at the time of a user interaction,
each will be below the threshold of human perception.

In summary, operating system designers have two reasons to use virtual memory
techniques to read in each program on a demand-driven basis: in order to avoid read-
ing unused portions and in order to quickly start the program’s execution. As with
more general persistent storage, each page fault causes the operating system to read in
more of the program.

One result of demand-driven program loading is that application programmers
can make their programs start up more quickly by grouping all the necessary code
together on a few pages. Of course, laying out the program text is really not a job for
the human application programmer, but for the compiler and linker. Nonetheless, the
programmer may be able to provide some guidance to these tools.

6.2.7 Efficient Zero Filling
For security reasons, as well as for ease of debugging, the operating system should never
let a process read from any memory location that contains a value left behind by some
other process that previously used the memory. Thus, any memory not occupied by a

hailperin-163001 book December 2, 2005 12:39

6.2 Uses for Virtual Memory ! 179

persistent object should be cleared out by the operating system before a new process
accesses it.

Even this seemingly mundane job—filling a region of memory with zeros—benefits
from virtual memory. The operating system can fill an arbitrarily large amount of vir-
tual address space with zeros using only a single zeroed-out page frame of physical
memory. All it needs to do is map all the virtual pages to the same physical page frame
and mark them as read-only.

In itself, this technique of sharing a page frame of zeros doesn’t address the situ-
ation where a process writes into one of its zeroed pages. However, that situation can
be handled using a variant of the COW technique mentioned in Section 6.2.2. When
the MMU interrupts the processor due to a write into the read-only page of zeros,
the operating system can update the mapping for that one page to refer to a separate
read/write page frame of zeros and then resume the process.

If it followed the COW principle literally, the operating system would copy the
read-only page frame of zeros to produce the separate, writable page frame of zeros.
However, the operating system can run faster by directly writing zeros into the new
page frame without needing to copy them out of the read-only page frame. In fact,
there is no need to do the zero filling only on demand. Instead, the operating system
can keep some spare page frames of zeros around, replenishing the stock during idle
time. That way, when a page fault occurs from writing into a read-only page of zeros,
the operating system can simply adjust the address map to refer to one of the spare
prezeroed page frames and then make it writable.

When the operating system proactively fills spare page frames with zeros during
idle time, it should bypass the processor’s normal cache memory and write directly
into main memory. Otherwise, zero filling can seriously hurt performance by displac-
ing valuable data from the cache.

6.2.8 Substituting Disk Storage for RAM
In explaining the application of virtual memory to persistence, I showed that the oper-
ating system can read accessed pages into memory from disk and can write dirty pages
back out to disk. The reason for doing so is that disk storage has different properties
from main semiconductor memory (RAM). In the case of persistence, the relevant dif-
ference is that disk storage is nonvolatile; that is, it retains its contents without power.
However, disk differs from RAM in other regards as well. In particular, it is a couple
orders of magnitude cheaper per gigabyte. This motivates another use of virtual mem-
ory, where the goal is to simulate having lots of RAM using less-expensive disk space.
Of course, disk is also five orders of magnitude slower than RAM, so this approach is
not without its pitfalls.

hailperin-163001 book December 2, 2005 12:39

180 ! Chapter 6 Virtual Memory

Many processes have long periods when they are not actively running. For exam-
ple, on a desktop system, a user may have several applications in different windows—a
word processor, a web browser, a mail reader, a spreadsheet—but focus attention on
only one of them for minutes or hours at a time, leaving the others idle. Similarly,
within a process, there may be parts that remain inactive. A spreadsheet user might
look at the online help once, and then not again during several days of spreadsheet use.

This phenomenon of inactivity provides an opportunity to capitalize on inexpen-
sive disk storage while still retaining most of the performance of fast semiconductor
memory. The computer system needs to have enough RAM to hold the working set—the
active portions of all active processes. Otherwise, the performance will be intolerably
slow, because of disk accesses made on a routine basis. However, the computer need
not have enough RAM for the entire storage needs of all the processes: the inactive por-
tions can be shuffled off to disk, to be paged back in when and if they again become
active. This will incur some delays for disk access when the mix of activity changes,
such as when a user sets the word processor aside and uses a spreadsheet for the first
time in days. However, once the new working set of active pages is back in RAM, the
computer will again be as responsive as ever.

Much of the history of virtual memory focuses on this one application, dating back
to the invention of virtual memory in the early 1960s. (At that time, the two memories
were magnetic cores and magnetic drum, rather than semiconductor RAM and mag-
netic disk.) Even though this kind of paging to disk has become only one of many roles
played by virtual memory, I will still pay it considerable attention. In particular, some
of the most interesting policy questions arise only for this application of virtual mem-
ory. When the operating system needs to free up space in overcrowded RAM, it needs
to guess which pages are unlikely to be accessed soon. I will come back to this topic
(so-called replacement policies) after first considering other questions of mechanism
and policy that apply across the full spectrum of virtual memory applications.

6.3 Mechanisms for Virtual Memory
Address mapping needs to be flexible, yet efficient. As I mentioned in Section 6.1, this
means that the mapping function is stored in an explicit table, but at the granular-
ity of pages rather than individual bytes or words. Most systems today use fixed-size
pages, perhaps with a few exceptions for the operating system itself or hardware access,
though research suggests that more general mixing of page sizes can be beneficial.

Typical page sizes have grown over the decades, for reasons you can explore in
Exercises 6.3 and 6.4; today, the most common is 4 kilobytes (KB). Each page of virtual
memory and each page frame of physical memory is this size, and each starts at an

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 181

0

1

Pages

2

3

4

5

6

7

X

X

X

X

X

0

1

Page frames

2

3

Figure 6.10 In this example mapping of eight pages to four page frames, page 0 has been allocated
page frame 1, page 1 has been allocated page frame 0, and page 6 has been allocated page frame 3.
The Xs indicate that no page frame is assigned to hold pages 2–5 or page 7. Page frame 2 is unused.

address that is a multiple of the page size. For example, with 4-KB pages, the first page
(or page frame) has address 0, the next has address 4096, then 8192, and so forth.

Each page of virtual memory address space maps to an underlying page frame of
physical memory or to none. For example, Figure 6.10 shows one possible mapping,
on a system with unrealistically few pages and page frames. The numbers next to the
boxes are page numbers and page frame numbers. The starting addresses are these
numbers multiplied by the page size. At the top of this figure, you can see that page 0
is stored in page frame 1. If the page size is 4 KB, this means that virtual address 0
translates to physical address 4096, virtual address 100 translates to physical address
4196, and so forth. The virtual address of the last 4-byte word in page 0, 4092, translates
to the physical address of the last word in page frame 1, 8188. Up until this point, all
physical addresses were found by adding 4096 to the virtual address. However, the very
next virtual address, 4096, translates to physical address 0, because it starts a new page,
which is mapped differently. Note also that page frame 2 is currently not holding any
page, and that pages 2–5 and page 7 have no translation available. In Exercise 6.5, you
can gain experience working with this translation of virtual addresses into physical
addresses by translating the addresses for page 6.

Of course, a realistic computer system will have many more page frames of physical
memory and pages of virtual address space. Often there are tens or hundreds of thou-
sands of page frames and at least hundreds of thousands of pages. As a result, operating
system designers need to think carefully about the data structure used to store the table

hailperin-163001 book December 2, 2005 12:39

182 ! Chapter 6 Virtual Memory

that maps virtual page numbers to physical page frame numbers. Sections 6.3.2
through 6.3.4 will be devoted to presenting three alternative structures that are in
current use for page tables: linear, multilevel, and hashed. (Other alternatives that
have fallen out of favor, or have not yet been deployed, are briefly mentioned in the
end-of-chapter notes.)

Whatever data structure the operating system uses for its page table, it will need
to communicate the mapping information to the hardware’s MMU, which actually
performs the mapping. The nature of this software/hardware interface constrains the
page table design and also provides important context for comparing the performance
of alternative page table structures. Therefore, in Section 6.3.1, I will explain the two
forms the software/hardware interface can take.

Finally, Section 6.3.5 provides a brief look at segmentation, which was historically
important both as an alternative to paging and as an adjunct to it.

6.3.1 Software/Hardware Interface
You have seen that the operating system stores some form of page table data structure
in memory, showing which physical memory page frame (if any) holds each virtual
memory page. Although I will present several possible page table structures shortly,
the most important design issue applies equally to all of them: the page table should
almost never be used.

Performance considerations explain why such an important data structure should
be nearly useless (in the literal sense). Every single memory access performed by the
processor generates a virtual address that needs translation to a physical address.
Naively, this would mean that every single memory access from the processor requires
a lookup operation in the page table. Performing that lookup operation would require
at least one more memory access, even if the page table were represented very effi-
ciently. Thus, the number of memory accesses would at least double: for each real
access, there would be one page table access. Because memory performance is often the
bottleneck in modern computer systems, this means that virtual memory might well
make programs run half as fast—unless the page table lookup can be mostly avoided.
Luckily, it can.

The virtual addresses accessed by realistic software are not random; instead, they
exhibit both temporal locality and spatial locality. That is, addresses that are accessed
once are likely to be accessed again before long, and nearby addresses are also likely to
be accessed soon. Because a nearby address is likely to be on the same page, both kinds
of locality wind up creating temporal locality when considered at the level of whole
pages. If a page is accessed, chances are good that the same page will be accessed again
soon, whether for the same address or another.

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 183

The MMU takes advantage of this locality by keeping a quickly accessible copy
of a modest number of recently used virtual-to-physical translations. That is, it stores
a limited number of pairs, each with one page number and the corresponding page
frame number. This collection of pairs is called the translation lookaside buffer (TLB).
Most memory accesses will refer to page numbers present in the TLB, and so the MMU
will be able to produce the corresponding page frame number without needing to
access the page table. This happy circumstance is known as a TLB hit; the less fortunate
case, where the TLB does not contain the needed translation, is a TLB miss.

The TLB is one of the most performance-critical components of a modern micro-
processor. In order for the system to have a fast clock cycle time and perform well on
small benchmarks, the TLB must be very quickly accessible. In order for the system’s
performance not to fall off sharply on larger workloads, the TLB must be reasonably
large (perhaps hundreds of entries), so that it can still prevent most page table accesses.
Unfortunately, these two goals are in conflict with one another: chip designers know
how to make lookup tables large or fast, but not both. Coping as well as possible with
this dilemma requires cooperation from the designers of hardware, operating system,
and application software:

• The hardware designers ameliorate the problem by including two TLBs, one for
instruction fetches and one for data loads and stores. That way, these two cate-
gories of memory access don’t need to compete for the same TLB.

• The hardware designers may further ameliorate the problem by including a hier-
archy of TLBs, analogous to the cache hierarchy. A small, fast level-one (L1) TLB
makes most accesses fast, while a larger, slower level-two (L2) TLB ensures that the
page table won’t need to be accessed every time the L1 TLB misses. As an example,
the AMD Opteron microprocessor contains 40-entry L1 instruction and data TLBs,
and it also contains 512-entry L2 instruction and data TLBs.

• The hardware designers also give the operating system designers some tools for
reducing the demand for TLB entries. For example, if different TLB entries can
provide mappings for pages of varying sizes, the operating system will be able
to map large, contiguously allocated structures with fewer TLB entries, while still
retaining flexible allocation for the rest of virtual memory.

• The operating system designers need to use tools such as variable page size to
reduce TLB entry consumption. At a minimum, even if all application processes
use small pages (4 KB), the operating system itself can use larger pages. Similarly,
a video frame buffer of many consecutive megabytes needn’t be carved up into
4-KB chunks. As a secondary benefit, using larger pages can reduce the size of page
tables.

hailperin-163001 book December 2, 2005 12:39

184 ! Chapter 6 Virtual Memory

• More fundamentally, all operating system design decisions need to be made with
an eye to how they will affect TLB pressure, because this is such a critical perfor-
mance factor. One obvious example is the normal page size. Another, less obvious,
example is the size of the scheduler’s time slices: switching processes frequently
will increase TLB pressure and thereby hurt performance, even if the TLB doesn’t
need to be flushed at every process switch. (I will take up that latter issue shortly.)

• The application programmers also have a role to play. Programs that exhibit strong
locality of reference will perform much better, not only because of the cache hier-
archy, but also because of the TLB. The performance drop-off when your program
exceeds the TLB’s capacity is generally quite precipitous. Some data structures are
inherently more TLB-friendly than others. For example, a large, sparsely occupied
table may perform much worse than a smaller, more densely occupied table. In
this regard, theoretical analyses of algorithms may be misleading, if they assume
all memory operations take a constant amount of time.

At this point, you have seen that each computer system uses two different repre-
sentations of virtual memory mappings: a page table and a TLB. The page table is a
comprehensive but slow representation, whereas the TLB is a selective but fast repre-
sentation. You still need to learn how entries from the page table get loaded into the
TLB. This leads to the topic of the software/hardware interface.

In general, the MMU loads page table entries into the TLB on a demand-driven
basis. That is, when a memory access results in a TLB miss, the MMU loads the relevant
translation into the TLB from the page table, so that future accesses to the same page
can be TLB hits. The key difference between computer architectures is whether the
MMU does this TLB loading autonomously, or whether it does it with lots of help
from operating system software running on the processor.

In many architectures, the MMU contains hardware, known as a page table walker,
that can do the page table lookup operation without software intervention. In this
case, the operating system must maintain the page table in a fixed format that the
hardware understands. For example, on an IA-32 processor (such as the Pentium 4),
the operating system has no other realistic option than to use a multilevel page table,
because the hardware page table walker expects this format. The software/hardware
interface consists largely of a single register that contains the starting address of the
page table. The operating system just loads this register and lets the hardware deal with
loading individual TLB entries. Of course, there are some additional complications. For
example, if the operating system stores updated mapping information into the page
table, it needs to flush obsolete entries from the TLB.

In other processors, the hardware has no specialized access to the page table. When
the TLB misses, the hardware transfers control to the operating system using an inter-
rupt. The operating system software looks up the missing address translation in the

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 185

page table, loads the translation into the TLB using a special instruction, and resumes
normal execution. Because the operating system does the page table lookup, it can use
whatever data structure its designer wishes. The lookup operation is done not with a
special hardware walker, but with normal instructions to load from memory. Thus, the
omission of a page table walker renders the processor more flexible, as well as simpler.
However, TLB misses become more expensive, as they entail a context switch to the
operating system with attendant loss of cache locality. The MIPS processor, used in the
Sony PlayStation 2, is an example of a processor that handles TLB misses in software.

Architectures also differ in how they handle process switches. Recall that each
process may have its own private virtual memory address space. When the operating
system switches from one process to another, the translation of virtual addresses to
physical addresses needs to change as well. In some architectures, this necessitates
flushing all entries from the TLB. (There may be an exception for global entries that
are not flushed, because they are shared by all processes.) Other architectures tag the
TLB entries with a process identifying number, known as an address space identifier
(ASID). A special register keeps track of the current process’s ASID. For the operating
system to switch processes, it simply stores a new ASID into this one register; the TLB
need not be flushed. The TLB will hit only if the ASID and page number both match,
effectively ignoring entries belonging to other processes.

For those architectures with hardware page table walkers, each process switch may
also require changing the register pointing to the page table. Typically, linear page
tables and multilevel page tables are per process. If an operating system uses a hashed
page table, on the other hand, it may share one table among all processes, using ASID
tags just like in the TLB.

Having seen how the MMU holds page translations in its TLB, and how those TLB
entries are loaded from a page table either by a hardware walker or operating system
software, it is time now to turn to the structure of page tables themselves.

6.3.2 Linear Page Tables
Linear page tables are conceptually the simplest form of page table, though as you will
see, they turn out to be not quite so simple in practice as they are in concept. A linear
page table is an array with one entry per page in the virtual address space. The first
entry in the table describes page 0, the next describes page 1, and so forth. To find the
information about page n, one uses the same approach as for any array access: multiply
n by the size of a page table entry and add that to the base address of the page table.

Recall that each page either has a corresponding page frame or has none. Therefore,
each page table entry contains, at a minimum, a valid bit and a page frame number. If
the valid bit is 0, the page has no corresponding frame, and the page frame number is

hailperin-163001 book December 2, 2005 12:39

186 ! Chapter 6 Virtual Memory

Valid Page Frame

1 1

1 0

0 X

0 X

0 X

0 X

1 3

0 X

Figure 6.11 In a linear page table, the information about page n is stored at position number n,
counting from 0. In this example, the first row, position 0, shows that page 0 is stored in page frame 1.
The second-to-last row, position 6, shows that page 6 is stored in page frame 3. The rows with valid bit
0 indicate that no page frame holds the corresponding pages, numbers 2–5 and 7. In these page table
entries, the page frame number is irrelevant and can be any number; an X is shown to indicate this.

unused. If the valid bit is 1, the page is mapped to the specified page frame. Real page
tables often contain other bits indicating permissions (for example, whether writing
is allowed), dirtiness, and so forth.

Figure 6.10 on page 181 showed an example virtual memory configuration in
which page 0 was held in page frame 1, page 1 in page frame 0, and page 6 in page
frame 3. Figure 6.11 shows how this information would be expressed in a linear page
table. Notice that the page numbers are not stored in the linear page table; they are
implicit in the position of the entries. The first entry is implicitly for page 0, the next
for page 1, and so forth, on down to page 7. If each page table entry is stored in 4 bytes,
this tiny page table would occupy 32 consecutive bytes of memory. The information
that page 3 has no valid mapping would be found 12 bytes after the base address of
the table.

The fundamental problem with linear page tables is that real ones are much larger
than this example. For a 32-bit address space with 4-KB pages, there are 220 pages,
because 12 of the 32 bits are used to specify a location within a page of 4 KB or 212

bytes. Thus, if you again assume 4 bytes per page table entry, you now have a 4-MB
page table. Storing one of those per process could use up an undesirably large frac-
tion of a computer’s memory. (My computer is currently running 70 processes, for a

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 187

hypothetical total of 280 MB of page tables, which would be 36 percent of my total
RAM.) Worse yet, modern processors are moving to 64-bit address spaces. Even if you
assume larger pages, it is hard to see how a linear page table spanning a 64-bit address
space could be stored. In Exercise 6.8, you can calculate just how huge such a page
table would be.

This problem of large page tables is not insurmountable. Linear page tables have
been used by 32-bit systems (for example, the VAX architecture, which was once quite
commercially important), and even 64-bit linear page tables have been designed—
Intel supports them as one option for its current Itanium architecture. Because storing
such a huge page table is inconceivable, the secret is to find a way to avoid storing
most of the table.

Recall that virtual memory address spaces are generally quite sparse: only a small
fraction of the possible page numbers actually have translations to page frames. (This is
particularly true on 64-bit systems; the address space is billions of times larger than for
32-bit systems, whereas the number of pages actually used may be quite comparable.)
This provides the key to not storing the whole linear page table: you need only store
the parts that actually contain valid entries.

On the surface, this suggestion seems to create as big a problem as it solves. Yes,
you might now have enough memory to store the valid entries, but how would you
ever find the entry for a particular page number? Recall that the whole point of a linear
page table is to directly find the entry for page n at the address that is n entries from the
beginning of the table. If you leave out the invalid entries, will this work any more?
Not if you squish the addresses of the remaining valid entries together. So, you had
better not do that.

You need to avoid wasting memory on invalid entries, and yet still be able to use
a simple array-indexing address calculation to find the valid entries. In other words,
the valid entries need to stay at the same addresses, whether there are invalid entries
before them or not. Said a third way, although you want to be thrifty with storage of
the page table, you cannot be thrifty with addresses. This combination is just barely
possible, because storage and addressing need not be the same.

Divorcing the storage of the page table from the allocation of addresses for its
entries requires three insights:

• The pattern of address space usage, although sparse, is not completely random.
Often, software will use quite a few pages in a row, leave a large gap, and then use
many more consecutive pages. This clumping of valid and invalid pages means
that you can decide which portions of the linear page table are worth storing at
a relatively coarse granularity and not at the granularity of individual page table
entries. You can store those chunks of the page table that contain any valid entries,

hailperin-163001 book December 2, 2005 12:39

188 ! Chapter 6 Virtual Memory

even if there are also a few invalid entries mixed in, and not store those chunks
that contain entirely invalid entries.

• In fact, you can choose your chunks of page table to be the same size as the pages
themselves. For example, in a system with 4-KB pages and 4-byte page table entries,
each chunk of page table would contain 1024 page table entries. Many of these
chunks won’t actually need storage, because there are frequently 1024 unused
pages in a row. Therefore, you can view the page table as a bunch of consecutive
pages, some of which need storing and some of which don’t.

• Now for the trick: use virtual memory to store the page table. That way, you decou-
ple the addresses of page table entries from where they are stored—if anywhere.
The virtual addresses of the page table entries will form a nice orderly array, with
the entry for page n being n entries from the beginning. The physical addresses are
another story. Recall that the page table is divided into page-sized chunks, not all
of which you want to store. For those you want to store, you allocate page frames,
wherever in memory is convenient. For those you don’t want to store, you don’t
allocate page frames at all.

If this use of virtual memory to store the virtual memory’s page table seems dizzy-
ing, it should. Suppose you start with a virtual address that has been generated by a
running application program. You need to translate it into a physical address. To do
so, you want to look up the virtual page number in the page table. You multiply the
application-generated virtual page number by the page table entry size, add the base
address, and get another virtual address: the virtual address of the page table entry. So,
now what? You have to translate the page table entry’s virtual address to a physical
address. If you were to do this the same way, you would seem to be headed down the
path to infinite recursion. Systems that use linear page tables must have a way out of
this recursion. In Figure 6.12, the box labeled “?” must not be another copy of the
whole diagram. That is where the simple concept becomes a not-so-simple reality.

Most solutions to the recursion problem take the form of using two different repre-
sentations to store the virtual-to-physical mapping information. One (the linear page
table) is used for application-generated virtual addresses. The other is used for the
translation of page table entries’ virtual addresses. For example, a multilevel page table
can be used to provide the mapping information for the pages holding the main linear
page table; I will describe multilevel page tables in Section 6.3.3.

This may leave you wondering what the point of the linear page table is. If another
representation is going to be needed anyway, why not use it directly as the main page
table, for mapping all pages, rather than only indirectly, for mapping the page table’s
pages? To answer this, you need to recall that the MMU has a TLB in which it keeps
track of recently used virtual-to-physical translations; repeated access to the same

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 189

Application’s virtual address

Application’s physical address

Application’s page
number

Application’s
offset within page

Load from memory
(Page table)

physical address of
page table entry

virtual address of
page table entry

Page table base
virtual address

4
(Page table
entry size)

Application’s page
frame number

Application’s
offset within page

!

+

?

Figure 6.12 This diagram shows how a virtual address, generated by an application process, is
translated into a physical address using a linear page table. At one point in the translation procedure,
indicated by a “?” in this diagram, the virtual address of the page table entry needs to be translated
into a physical address. This must be done using a method that is different from the one used for
the application’s virtual address, in order to avoid an infinite recursion. To see this, imagine inserting
another copy of the whole diagram in place of the “?” box. A second “?” would result, which would
require further substitution, and so forth to infinity.

virtual page number doesn’t require access to the page table. Only when a new page
number is accessed is the page table (of whatever kind) accessed. This is true not only
when translating the application’s virtual address, but also when translating the virtual
address of a page table entry.

hailperin-163001 book December 2, 2005 12:39

190 ! Chapter 6 Virtual Memory

Depending on the virtual address generated by the application software, there are
three possibilities:

1. For an address within the same page as another recent access, no page table lookup
is needed at all, because the MMU already knows the translation.

2. For an address on a new page, but within the same chunk of pages as some previous
access, only a linear page table lookup is needed, because the MMU already knows
the translation for the appropriate page of the linear page table.

3. For an address on a new page, far from others that have been accessed, both kinds
of page table lookup are needed, because the MMU has no relevant translations
cached in its TLB.

Because virtual memory accesses generally exhibit temporal and spatial locality, most
accesses fall into the first category. However, for those accesses, the page table organi-
zation is irrelevant. Therefore, to compare linear page tables with alternative organi-
zations, you should focus on the remaining accesses. Of those accesses, spatial locality
will make most fall into the second category rather than the third. Thus, even if there
is a multilevel page table behind the scenes, it will be used only rarely. This is impor-
tant, because the multilevel page table may be quite a bit slower than the linear one.
Using the combination improves performance at the expense of complexity.

6.3.3 Multilevel Page Tables
Recall that the practicality of linear page tables relies on two observations:

• Because valid page table entries tend to be clustered, if the page table is divided
into page-sized chunks, there will be many chunks that don’t need storage.

• The remaining chunks can be located as though they were in one big array by
using virtual memory address translation to access the page table itself.

These two observations are quite different from one another. The first is an empirical
fact about most present-day software. The second is a design decision. You could accept
the first observation while still making a different choice for how the stored chunks
are located. This is exactly what happens with multilevel page tables (also known as
hierarchical page tables or forward-mapped page tables). They too divide the page table
into page-sized chunks, in the hopes that most chunks won’t need storage. However,
they locate the stored chunks without recursive use of virtual memory by using a tree
data structure, rather than a single array.

For simplicity, start by considering the two-level case. This suffices for 32-bit archi-
tectures and is actually used in the extremely popular IA-32 architecture, the archi-
tecture of Intel’s Pentium and AMD’s Athlon family microprocessors. The IA-32

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 191

Page directory

(No pages
1024–2047)

X

(No page 1)
X

Page table

Page 0 Page 1023 Page 1047552 Page 1047553

…

…… …

… ……

Figure 6.13 The IA-32 two-level page table has a page directory that can point to 1024 chunks of
the page table, each of which can point to 1024 page frames. The leftmost pointer leading from the
leftmost chunk of the page table points to the page frame holding page 0. Each entry can also be
marked invalid, indicated by an X in this diagram. For example, the second entry in the first chunk of
the page table is invalid, showing that no page frame holds page 1. The same principle applies at the
page directory level; in this example, no page frames hold pages 1024–2047, so the second page
directory entry is marked invalid.

architecture uses 4-KB pages and has page table entries that occupy 4 bytes. Thus,
1024 page-table entries fit within one page-sized chunk of the page table. As such,
a single chunk can span 4 MB of virtual address space. Given that the architecture
uses 32-bit virtual addresses, the full virtual address space is 4 gigabytes (GB) (that is,
232 bytes); it can be spanned by 1024 chunks of the page table. All you need to do is
locate the storage of each of those 1024 chunks or, in some cases, determine that the
chunk didn’t merit storage. You can do that using a second-level structure, much like
each of the chunks of the page table. It, too, is 4 KB in size and contains 1024 entries,
each of which is 4 bytes. However, these entries in the second-level page directory point
to the 1024 first-level chunks of the page table, rather than to individual page frames.
See Figure 6.13 for an illustration of the IA-32 page table’s two-level hierarchy, with
branching factor 1024 at each level. In this example, page 1 is invalid, as are pages
1024–2047. You can explore this example further in Exercise 6.9 and can consider a
modified version of this page table format in Exercise 6.10.

The operating system on an IA-32 machine stores the physical base address of the
page directory in a special register, where the hardware’s page table walker can find it.
Suppose that at some later point, the processor generates a 32-bit virtual address and
presents it to the MMU for translation. Figure 6.14 shows the core of the translation

hailperin-163001 book December 2, 2005 12:39

192 ! Chapter 6 Virtual Memory

Page directory
index

Page table
index

Offset within
page

12 bits20 bits

10 bits 12 bits

Load from
memory

Load from
memory

! !

+

+

4 4

Page
directory

base

address of page
directory entry

address of page
table entry

page table
base

Page frame number Offset within
page frame

10 bits

Virtual address

Page number

Physical address

Figure 6.14 This diagram shows only the core of IA-32 paged address mapping, omitting the TLB
and validity checks. The virtual address is divided into a 20-bit page number and 12-bit offset within the
page; the latter 12 bits are left unchanged by the translation process. The page number is subdivided
into a 10-bit page directory index and a 10-bit page table index. Each index is multiplied by 4, the
number of bytes in each entry, and then added to the base physical address of the corresponding data
structure, producing a physical memory address from which the entry is loaded. The base address
of the page directory comes from a register, whereas the base address of the page table comes from
the page directory entry.

process, omitting the TLB and the validity checks. In more detail, the MMU follows
the following translation process:

1. Initially divide the 32-bit virtual address into its left-hand 20 bits (the page num-
ber) and right-hand 12 bits (the offset within the page).

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 193

2. Look up the 20-bit page number in the TLB. If a TLB hit occurs, concatenate the
resulting page frame number with the 12-bit offset to form the physical address.
The process is over.

3. On the other hand, if a TLB miss occurred, subdivide the 20-bit page number into
its left-hand 10 bits (the page directory index) and its right-hand 10 bits (the page
table index).

4. Load the page directory entry from memory; its address is four times the page direc-
tory index plus the page directory base address, which is taken from the special
register.

5. Check the page directory entry’s valid bit. If it is 0, then there is no page frame
holding the page in question—or any of its 1023 neighbors, for that matter. Inter-
rupt the processor with a page fault.

6. Conversely, if the valid bit is 1, the page directory entry also contains a physical
base address for a chunk of page table.

7. Load the page table entry from memory; its address is four times the page table
index plus the page table base address, which comes from the previous step.

8. Check the page table entry’s valid bit. If it is 0, then there is no page frame holding
the page in question. Interrupt the processor with a page fault.

9. On the other hand, if the valid bit is 1, the page table entry also contains the
physical page frame number. Load the TLB and complete the memory access.

This description, although somewhat simplified, shows the key feature of the
IA-32 design: it has a compact page directory, with each entry covering a span of 4 MB.
For the 4-MB regions that are entirely invalid, nothing further is stored. For the regions
containing valid pages, the page directory entry points to another compact structure
containing the individual page table entries.

The actual IA-32 design derives some additional advantages from having the page
directory entries with their 4-MB spans:

• Each page directory entry can optionally point directly to a single large 4-MB
page frame, rather than pointing to a chunk of page table entries leading indi-
rectly to 4-KB page frames, as I described. This option is controlled by a page-size
bit in the page directory entry. By using this feature, the operating system can
more efficiently provide the mapping information for large, contiguously allocated
structures.

• Each page directory entry contains permission bits, just like the page table entries
do. Using this feature, the operating system can mark an entire 4-MB region of
virtual address space as being read-only more quickly, because it doesn’t need to

hailperin-163001 book December 2, 2005 12:39

194 ! Chapter 6 Virtual Memory

set the read-only bits for each 4-KB page in the region. The translation process
outlined earlier is extended to check the permission bits at each level and signal a
page fault interrupt if there is a permission violation at either level.

The same principle used for two-level page tables can be expanded to any greater
number of levels. If you have taken a course on data structures, you may have seen this
structure called a trie (or perhaps a digital tree or radix tree). The virtual page number is
divided into groups of consecutive bits. Each group of bits forms an index for use at
one level of the tree, starting with the leftmost group at the top level. The indexing at
each level allows the chunk at the next level down to be located.

For example, the AMD64 architecture (used in the Opteron and Athlon 64 proc-
essors and later imitated by Intel under the name IA-32e) employs four-level page
tables of this kind. Although the AMD64 is nominally a 64-bit architecture, the virtual
addresses are actually limited to only 48 bits in the current version of the architecture.
Because the basic page size is still 4 KB, the rightmost 12 bits are still the offset within
a page. Thus, 36 bits remain for the virtual page number. Each page table entry (or
similar entry at the higher levels) is increased in size to 8 bytes, because the physi-
cal addresses are larger than in IA-32. Thus, a 4-KB chunk of page table can reference
only 512 pages spanning 2 MB. Similarly, the branching factor at each higher level of
the tree is 512. Because 9 bits are needed to select from 512 entries, it follows that the
36-bit virtual page number is divided into four groups of 9 bits each, one for each level
of the tree.

Achieving adequate performance with a four-level page table is challenging. The
AMD designers will find this challenge intensified if they extend their architecture to
full 64-bit virtual addresses, which would require two more levels be added to the page
table. Other designers of 64-bit processors have made different choices: Intel’s Itanium
uses either linear page tables or hashed page tables, and the PowerPC uses hashed page
tables.

6.3.4 Hashed Page Tables
You have seen that linear page tables and multilevel page tables have a strong family
resemblance. Both designs rely on the assumption that valid and invalid pages occur
in large clumps. As a result, each allows you to finesse the dilemma of wanting to store
page table entries for successive pages consecutively in memory, yet not wanting to
waste storage on invalid entries. You store page table entries consecutively within each
chunk of the table and omit storage for entire chunks of the table.

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 195

Suppose you take a radical approach and reject the starting assumption. You will
still assume that the address space is sparsely occupied; that is, many page table entries
are invalid and should not be stored. (After all, no one buys 264 bytes of RAM for their
64-bit processor.) However, you will no longer make any assumption about cluster-
ing of the valid and invalid pages—they might be scattered randomly throughout the
whole address space. This allows greater flexibility for the designers of runtime envi-
ronments. As a consequence, you will have to store individual valid page table entries,
independent of their neighbors.

Storing only individual valid page table entries without storing any of the invalid
entries takes away the primary tool used by the previous approaches for locating
entries. You can no longer find page n’s entry by indexing n elements into an array—
not even within each chunk of the address space. Therefore, you need to use an entirely
different approach to locating page table entries. You can store them in a hash table,
known as a hashed page table.

A hashed page table is an array of hash buckets, each of which is a fixed-sized struc-
ture that can hold some small number of page table entries. (In the Itanium architec-
ture, each bucket holds one entry, whereas in the PowerPC, each bucket holds eight
entries.) Unlike the linear page table, this array of buckets does not have a private
location for each virtual page number; as such, it can be much smaller, particularly on
64-bit architectures.

Because of this reduced array size, the page number cannot be directly used as
an index into the array. Instead, the page number is first fed through a many-to-one
function, the hash function. That is, each page gets assigned a specific hash bucket by
the hash function, but many different pages get assigned the same bucket. The simplest
plausible hash function would be to take the page number modulo the number of
buckets in the array. For example, if there are 1000000 hash buckets, then the page
table entries for pages 0, 1000000, 2000000, and so forth would all be assigned to
bucket 0, while pages 1, 1000001, 2000001, and so forth would all be assigned to
bucket 1.

The performance of the table relies on the assumption that only a few of the pages
assigned to a bucket will be valid and hence have page table entries stored. That is,
the assumption is that only rarely will multiple valid entries be assigned to the same
bucket, a situation known as a hash collision. To keep collisions rare, the page table size
needs to scale with the number of valid page table entries. Luckily, systems with lots
of valid page table entries normally have lots of physical memory and therefore have
room for a bigger page table.

Even if collisions are rare, there must be some mechanism for handling them.
One immediate consequence is that each page table entry will now need to include

hailperin-163001 book December 2, 2005 12:39

196 ! Chapter 6 Virtual Memory

Valid Page Page Frame

1 0 1

1 1 0

1 6 3

0 X X

Figure 6.15 Each entry in a hashed page table is in a location determined by feeding the page
number through a hash function. In this example, the hash function consists of taking the page
number modulo the number of entries in the table, 4. Consider the entry recording that page 6 is held
by page frame 3. This entry is in position 2 within the table (counting from 0) because the remainder
when 6 is divided by 4 is 2.

an indication of which virtual page number it describes. In the linear and multilevel
page tables, the page number was implicit in the location of the page table entry. Now,
any one of many different page table entries could be assigned to the same location,
so each entry needs to include an identifying tag, much like in the TLB.

For an unrealistically small example of using a hashed page table, we can return
to Figure 6.10 on page 181. Suppose you have a hashed page table with four buckets,
each capable of holding one entry. Each of the four entries will contain both a virtual
page number and a corresponding physical page number. If the hash function con-
sists of taking the page number modulo 4, the table would contain approximately the
information shown in Figure 6.15.

The possibility of collisions has another consequence, beyond necessitating page
number tags. Even if collisions occur, each valid page table entry needs to be stored
somewhere. Because the colliding entries cannot be stored in the same location, some
alternative location needs to be available. One possibility is to have alternative loca-
tions within each hash bucket; this is why the PowerPC has room for eight page
table entries in each bucket. Provided no collision involves more than this number
of entries, they can all be stored in the same bucket. The PowerPC searches all entries
in the bucket, looking for one with a matching tag.

If a collision involving more than eight entries occurs on a PowerPC, or any colli-
sion at all occurs on an Itanium processor, the collision cannot be resolved within the
hash bucket. To handle such collisions, the operating system can allocate some extra
memory and chain it onto the bucket in a linked list. This will be an expensive but
rare occurrence. As a result, hardware page table walkers do not normally handle this
case. If the walker does not find a matching tag within the bucket, it uses an interrupt

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 197

to transfer control to the operating system, which is in charge of searching through
the linked list.

You have now seen two reasons why the page table entries in hashed page tables
need to be larger than those in linear or multilevel page tables. The hashed page table
entries need to contain virtual page number tags, and each bucket needs a pointer
to an overflow chain. As a result of these two factors and the addition of some extra
features, the Itanium architecture uses 32-byte entries for hashed page tables versus
8-byte entries for linear page tables.

Incidentally, the fact that the Itanium architecture supports two different page
table formats suggests just how hard it is to select one. Research continues into the
relative merits of the different formats under varying system workloads. As a result of
this research, future systems may use other page table formats beyond those described
here, though they are likely to be variants on one of these themes. Architectures such as
MIPS that have no hardware page table walker are excellent vehicles for such research,
because they allow the operating system to use any page table format whatsoever.

Some operating systems treat a hashed page table as a software TLB, a table similar
to the hardware’s TLB in that it holds only selected page table entries. In this case,
no provision needs to be made for overfull hash buckets; the entries that don’t fit can
simply be omitted. A slower multilevel page table provides a comprehensive fallback
for misses in the software TLB. This alternative is particularly attractive when porting
an operating system (such as Linux) that was originally developed on a machine with
multilevel page tables.

6.3.5 Segmentation
Thus far, I have acted as though virtual memory were synonymous with paging. Today,
that is true. However, when virtual memory was first developed in the 1960s, there
were two competing approaches: paging and segmentation. Some systems (notably
Multics) also included a hybrid of the two. Thus, seen historically, segmentation was
both a competitor and a collaborator of paging. Today, segmentation remains only
in vestigial form. The IA-32 architecture still contains full support for segmentation,
but no common operating system uses it, and the successor architectures (Itanium
and AMD64) have dropped it. As such, this subsection can be omitted with no
great loss.

Recall that the basic premise of virtual memory is that a process uses addresses
as names for objects, whereas memory uses addresses as routing information for stor-
age locations. The defining property of segmentation is that the processor’s virtual
addresses name objects using two granularities: each virtual address names both an

hailperin-163001 book December 2, 2005 12:39

198 ! Chapter 6 Virtual Memory

aggregate object, such as a table or file, and a particular location within that object,
such as a table entry or a byte within a file. This is somewhat analogous to my name,
“Max Hailperin,” which identifies both the family to which I belong (Hailperin), and
the particular person within that family (Max).

The aggregate objects, such as tables or files, that have names akin to family names
are called segments. Each process refers to its segments by segment number. Each virtual
address is divided into two parts: some number of bits are a segment number, and the
remaining bits are a location within that segment.

On the surface, segmented virtual addresses may not seem very different from
paged ones. After all, you saw that paged virtual addresses are also divided into two
parts: a page number and an offset within that page. For example, a 32-bit address
might be divided into a 20-bit page number and a 12-bit offset within the page. The key
difference is that pages are purely an implementation detail; they do not correspond
to logical objects such as files, stacks, or tables.

Because segments correspond to logical objects, they cannot have a fixed size, such
as 4 KB. Each segment will have its own natural size. For example, each file a process
accesses might be mapped into the virtual address space as its own segment. If so, the
segment sizes will need to match the file sizes, which could be quite arbitrary.

A system employing pure segmentation maps each segment into a contiguous
range of physical memory. Instead of a page table, the system uses a segment table,
which specifies for each segment number the starting physical address, the size, and
the permissions.

Unlike paging, pure segmentation does not provide for flexible allocation of phys-
ical memory; external fragmentation may occur, where it is hard to find enough con-
tiguous free memory to accommodate a segment. In addition, pure segmentation does
not provide good support for moving inactive information to disk, because only an
entire segment can be transferred to or from disk.

Because of these and similar problems, segmentation can be combined with pag-
ing. Each process uses two-part addresses containing segment numbers and offsets. The
MMU translates each of these addresses in two stages using both a segment table and
a page table. The end result is an offset within a physical memory page frame. Thus,
each segment may occupy any available page frames, even if they are not contiguous,
and individual pages of the segment may be moved to disk.

Systems have combined segmentation with paging in two slightly different ways,
one exemplified by the IA-32 architecture and the other by the Multics system. The
key difference is whether all the segments share a single page table, as in the IA-32, or
are given individual page tables, as in Multics.

Figure 6.16 shows how segmentation and paging are used together in the IA-32
architecture’s MMU. When the IA-32 MMU translates a virtual address, it starts by

hailperin-163001 book December 2, 2005 12:39

6.3 Mechanisms for Virtual Memory ! 199

Segment number Offset within segment

Segment table

Page number Offset within
page

Page frame number Offset within
page frame

Unified
page table

segment
base +

Virtual address

Linear address

Physical address

Figure 6.16 The IA-32 architecture combines segmentation and paging using a single page table
for all the segments. The segment table is used to translate the segment number into a base address,
to which the offset within the segment is added, yielding a linear address. The linear address is then
translated to a physical address using the unified page table, as shown in greater detail in Figure 6.14.

looking up the segment number in a segment table, yielding a starting address for the
segment, a length, and permissions, just like in systems that use pure segmentation.
Assuming the permissions are OK and the offset is legal with regard to the length, the
MMU adds the segment’s starting address to the offset. However, rather than treating
the sum as a physical address, the MMU treats it as a paged virtual address, of the sort
I have described in previous subsections. In IA-32 terminology, this address is known
as a linear address. The MMU looks up the linear address in a single page table, shared
by all the segments, in order to locate the appropriate page frame.

Figure 6.17 shows an alternative method of combining segmentation and paging,
which was used in the Multics system. The Multics approach also starts by looking
up the segment number in a segment table, which again provides information on the

hailperin-163001 book December 2, 2005 12:39

200 ! Chapter 6 Virtual Memory

Segment
number Page number Offset

within page

Segment
table

page table
base Segment-specific

page table

Page frame number Offset within
page frame

Virtual address

Physical address

Figure 6.17 The Multics system combines segmentation and paging using a separate page table
for each segment. The segment table is used to find the appropriate page table, which is then used
to translate the address within the segment.

segment’s length and permissions to allow the MMU to check the access for legal-
ity. However, this segment table does not contain a starting address for the segment;
instead, it contains a pointer to the segment’s private page table. The MMU uses this
segment-specific page table to translate the offset within the segment, using tech-
niques of the sort you saw in previous subsections. The end result is again an offset
within a page frame.

Which approach is simpler for the operating system to manage? On the surface, the
IA-32 approach looks simpler, because it uses only a single page table instead of one per
segment. However, it has a significant disadvantage relative to the Multics approach.
Remember that both approaches allow space in physical memory to be flexibly allo-
cated in individual, non-contiguous page frames. However, the IA-32 approach forces
each segment to be allocated a single contiguous region of address space at the level of
linear addresses. Thus, the IA-32 approach forces the operating system to deal with the
complexities of contiguous allocation, with its potential for external fragmentation.

Unlike pure segmentation, which is undeniably inferior to paging, the combi-
nation of segmentation and paging seems attractive, as it combines segmentation’s
meaningful units for protection and sharing with paging’s smaller units for space allo-
cation and data transfer. However, many of the same protection and sharing features

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 201

can be simulated using paging alone. Probably as a result of this, many hardware
designers decided the cost of segmentation, in both money and performance, was
not worth the gain. Therefore, they provided support only for paging. This created a
disincentive for the use of segmentation in operating systems; all popular operating
systems (such as UNIX, Microsoft Windows, and Linux) are designed to be portable
across multiple hardware architectures, some of which don’t support segmentation.
As a result, none of these operating systems makes any use of segmentation, even on
systems where it is supported. This completes a cycle of disincentives; designers of
modern architectures have no reason to support segmentation, because modern oper-
ating systems do not use it.

Although modern architectures no longer support segmentation, they do have one
feature that is reminiscent of the combination of segmentation and paging. Recall that
TLBs and hashed page tables use ASIDs to tag page translations so that translations
from different processes can coexist. I said that a special register holds the ASID of
the current process. In actuality, many modern architectures allow each process to use
several different ASIDs; the top few bits of each virtual address select one of a group of
ASID registers. Thus, address translation occurs in two steps. First, the top bits of the
address are translated to an ASID; then the ASID and the remaining bits are translated
into a page frame and offset. If the operating system sets up several processes to use
the same ASID for a shared library, they will wind up sharing not only the page frames,
but also the page table and TLB entries. This is akin to processes sharing a segment.
However, unlike segmentation, it is invisible at the application level. Also, the number
of segments (ASIDs) per process may be quite limited: eight on the Itanium and 16 on
the 32-bit version of PowerPC.

6.4 Policies for Virtual Memory
Thus far, I have defined virtual memory, explained its usefulness, and shown some of
the mechanisms typically used to map pages to page frames. Mechanisms alone, how-
ever, are not enough. The operating system also needs a set of policies describing how
the mechanisms are used. Those policies provide answers for the following questions:

• At what point is a page assigned a page frame? Not until the page is first accessed,
or at some earlier point? This decision is particularly performance critical if the
page needs to be fetched from disk at the time it is assigned a page frame. For this
reason, the policy that controls the timing of page frame assignment is normally
called the fetch policy.

hailperin-163001 book December 2, 2005 12:39

202 ! Chapter 6 Virtual Memory

• Which page frame is assigned to each page? I have said that each page may be
assigned any available frame, but some assignments may result in improved
performance of the processor’s cache memory. The policy that selects a page frame
for a page is known as the placement policy.

• If the operating system needs to move some inactive page to disk in order to free
up a page frame, which page does it choose? This is known as the the replacement
policy, because the page being moved to disk will presumably be replaced by a new
page—that being the motivation for freeing a page frame.

All of these policies affect system performance in ways that are quite workload
dependent. For example, a replacement policy that performs well for one workload
might perform terribly on another; for instance, it might consistently choose to evict
a page that is accessed again a moment later. As such, these policies need to be cho-
sen and refined through extensive experimentation with many real workloads. In the
following subsections, I will focus on a few sample policies that are reasonably simple
and have performed adequately in practice.

6.4.1 Fetch Policy
The operating system has wide latitude regarding when each page is assigned a page
frame. At one extreme, as soon as the operating system knows about a page’s existence,
it could assign a page frame. For example, when a process first starts running, the
operating system could immediately assign page frames for all the pages holding the
program and its statically allocated data. Similarly, when a process asks the operating
system to map a file into the virtual memory address space, the operating system could
assign page frames for the entire file. At the other extreme, the operating system could
wait for a page fault caused by an access to a page before assigning that page a page
frame. In between these extremes lies a range of realistic fetch policies that try to stay
just a little ahead of the process’s needs.

Creating all page mappings right away would conflict with many of the original
goals for virtual memory, such as fast start up of programs that contain large but rarely
used portions. Therefore, one extreme policy can be discarded. The other, however, is
a reasonable choice under some circumstances. A system is said to use demand paging
if it creates the mapping for each page in response to a page fault when accessing that
page. Conversely, it uses prepaging if it attempts to anticipate future page use.

Demand paging has the advantage that it will never waste time creating a page
mapping that goes unused; it has the disadvantage that it incurs the full cost of a page

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 203

fault for each page. On balance, demand paging is particularly appropriate under the
following circumstances:

• If the process exhibits limited spatial locality, the operating system is unlikely to
be able to predict what pages are going to be used soon. This makes paging in
advance of demand less likely to pay off.

• If the cost of a page fault is particularly low, even moderately accurate predictions
of future page uses may not pay off, because so little is gained each time a correct
prediction allows a page fault to be avoided.

The Linux operating system uses demand paging in exactly the circumstances sug-
gested by this analysis. The fetch policy makes a distinction between zero-filled pages
and those that are read from a file, because the page fault costs are so different. Linux
uses demand paging for zero-filled pages because of their comparatively low cost. In
contrast, Linux ordinarily uses a variant of prepaging (which I explain in the remain-
der of this subsection) for files mapped into virtual memory. This makes sense because
reading from disk is slow. However, if the application programmer notifies the oper-
ating system that a particular memory-mapped file is going to be accessed in a “ran-
dom” fashion, then Linux uses demand paging for that file’s pages. The programmer
can provide this information using the madvise procedure.

The most common form of prepaging is clustered paging, in which each page fault
causes a cluster of neighboring pages to be fetched, including the one incurring the
fault. Clustered paging is also called read around, because pages around the faulting
page are read. (By contrast, read ahead reads the faulting page and later pages, but no
earlier ones.)

The details of clustered paging vary between operating systems. Linux reads a clus-
ter of sixteen pages aligned to start with a multiple of 16. For example, a page fault
on any of the first sixteen pages of a file will cause those sixteen pages to be read.
Thus, the extra fifteen pages can be all before the faulting page, all after it, or any mix.
Microsoft Windows uses a smaller cluster size, which depends in part on the kind of
page incurring the fault: instructions or data. Because instruction accesses generally
exhibit more spatial locality than data accesses, Windows uses a larger cluster size for
instruction pages than for data pages.

Linux’s read around is actually a slight variant on the prepaging theme. When a
page fault occurs, the fault handler fetches a whole cluster of pages into RAM but only
updates the faulting page table entry. The other pages are in RAM but not mapped
into any virtual address space; this status is known as the page cache. Subsequent page
faults can quickly find pages in the page cache. Thus, read around doesn’t decrease the

hailperin-163001 book December 2, 2005 12:39

204 ! Chapter 6 Virtual Memory

total number of page faults, but converts many from major page faults (reading disk)
to minor page faults (simply updating the page table).

Because reading from disk takes about 10 milliseconds and because reading six-
teen pages takes only slightly longer than reading one, the success rate of pre-
paging doesn’t need to be especially high for it to pay off. For example, if the additional
time needed to read and otherwise process each prepaged page is half a millisecond,
then reading a cluster of sixteen pages, rather than a single page, adds 7.5 milliseconds.
This would be more than repaid if even a single one of the fifteen additional pages gets
used, because the prepaging would avoid a 10-millisecond disk access time.

6.4.2 Placement Policy
Just as the operating system needs to determine when to make a page resident (on
demand or in advance), it needs to decide where the page should reside by selecting
one of the unused page frames. This choice influences the physical memory addresses
that will be referenced and can thereby influence the miss rate of the cache memory
hardware.

Although cache performance is the main issue in desktop systems, there are at least
two other reasons why the placement policy may matter. In large-scale multiprocessor
systems, main memory is distributed among the processing nodes. As such, any given
processor will have some page frames it can more rapidly access. Microsoft Windows
Server 2003 takes this effect into account when allocating page frames. Another issue,
likely to become more important in the future, is the potential for energy savings if
all accesses can be confined to only a portion of memory, allowing the rest to be put
into standby mode.

To explain why the placement policy influences cache miss rate, I need to review
cache memory organization. An idealized cache would hold the n most recently
accessed blocks of memory, where n is the cache’s size. However, this would require
each cache access to examine all n blocks, looking to see if any of them contains the
location being accessed. This approach, known as full associativity, is not feasible for
realistically large caches. Therefore, real caches restrict any given memory location to
only a small set of positions within the cache; that way, only those positions need
to be searched. This sort of cache is known as set-associative. For example, a two-way
set-associative cache has two alternative locations where any given memory block can
be stored.

Consider what would happen if a process repeatedly accesses three blocks of mem-
ory that have the misfortune of all competing for the same set of a two-way set-
associative cache. Even though the cache may be large—capable of holding far more

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 205

than the three blocks that are in active use—the miss rate will be very high. The
standard description for this situation is to say the cache is suffering from conflict misses
rather than capacity misses. Because each miss necessitates an access to the slower main
memory, the high rate of conflict misses will significantly reduce performance.

The lower the cache’s associativity, the more likely conflict misses are to be a prob-
lem. Thus, careful page placement was more important in the days when caches were
external to the main microprocessor chips, as external caches are often of low associa-
tivity. Improved semiconductor technology has now allowed large caches to be inte-
grated into microprocessors, making higher associativity economical and rendering
placement policy less important.

Suppose, though, that an operating system does wish to allocate page frames to
reduce cache conflicts. How would it know which pages are important to keep from
conflicting? One common approach is to assume that pages that would not conflict
without virtual memory address translation should not conflict even with address
translation; this is known as page coloring. Another common approach is to assume
that pages that are mapped into page frames soon after one another are likely to also
be accessed in temporal proximity; therefore, they should be given nonconflicting
frames. This is known as bin hopping.

The main argument in favor of page coloring is that it leaves intact any careful
allocation done at the level of virtual addresses. Some compiler authors and applica-
tion programmers are aware of the importance of avoiding cache conflicts, particularly
in high-performance scientific applications, such as weather forecasting. For example,
the compiler or programmer may pad each row of an array with a little wasted space
so that iterating down a column of the array won’t repeatedly access the same set
of the cache. This kind of cache-conscious data allocation will be preserved by page
coloring.

The main argument in favor of bin hopping is that experimental evidence suggest
it performs better than page coloring does, absent cache-conscious data allocation.
This may be because page coloring is less flexible than bin hopping, providing only a
way of deciding on the most preferred locations in the cache for any given page, as
opposed to ranking all possible locations from most preferred to least.

6.4.3 Replacement Policy
Conceptually, a replacement policy chooses a page to evict every time a page is fetched
with all page frames in use. However, operating systems typically try to do some evic-
tion in advance of actual demand, keeping an inventory of free page frames. When
the inventory drops below a low-water mark, the replacement policy starts freeing up

hailperin-163001 book December 2, 2005 12:39

206 ! Chapter 6 Virtual Memory

page frames, continuing until the inventory surpasses a high-water mark. Freeing page
frames in advance of demand has three advantages:

• Last-minute freeing in response to a page fault will further delay the process that
incurred the page fault. In contrast, the operating system may schedule proactive
work to maintain an inventory of free pages when the hardware is otherwise idle,
improving response time and throughput.

• Evicting dirty pages requires writing them out to disk first. If the operating system
does this proactively, it may be able to write back several pages in a single disk
operation, making more efficient use of the disk hardware.

• In the time between being freed and being reused, a page frame can retain a copy
of the page it most recently held. This allows the operating system to inexpen-
sively recover from poor replacement decisions by retrieving the page with only a
minor page fault instead of a major one. That is, the page can be retrieved by map-
ping it back in without reading it from disk. You will see that this is particularly
important if the MMU does not inform the replacement policy which pages have
been recently referenced.

In a real operating system, a page frame may go through several temporary states
between when it is chosen for replacement and when it is reused. For example,
Microsoft Windows may move a replaced page frame through the following four inven-
tories of page frames, as illustrated in Figure 6.18:

• When the replacement policy first chooses a dirty page frame, the operating system
moves the frame from a process’s page table to the modified page list. The modified
page list retains information on the previous page mapping so that a minor page
fault can retrieve the page. (Microsoft calls this a soft page fault.)

• If a page frame remains in the modified page list long enough, a system thread
known as the modified page writer will write the contents out to disk and move the
frame to the standby page list. A page frame can also move directly from a process’s
page table to the standby page list if the replacement policy chooses to evict a
clean page. The standby page list again retains the previous mapping information
so that a soft page fault can inexpensively recover a prematurely evicted page.

• If a page frame remains on standby for long enough without being faulted back
into use, the operating system moves it to the free page list. This list provides page
frames for the system’s zero page thread to proactively fill with zeros, so that zero-
filled pages will be available to quickly respond to page faults, as discussed ear-
lier. The operating system also prefers to use a page frame from the free list when
reading a page in from disk.

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 207

Page table

Modified
page list

Standby
page list

Free
page list

Zero
page list

page fault

page fault with disk read

clean eviction

soft page fault

zero
filled

after some
time

written
to disk

dirty eviction

soft page fault

Figure 6.18 Each page frame in Microsoft Windows that is not referenced from a page table is
included in one of the four page lists. Page frames circulate as shown here. For example, the system
can use a soft page fault to recover a page frame from the modified or standby page list, if the page
contained in that page frame proves to still be needed after having been evicted by the replacement
policy.

• Once the zero page thread has filled a free page frame with zeros, it moves the page
frame to the zero page list, where it will remain until mapped back into a process’s
page table in response to a page fault.

Using a mechanism such as this example from Windows, an operating system
keeps an inventory of page frames and thus need not evict a page every time it fetches
a page. In order to keep the size of this inventory relatively stable over the long term,
the operating system balances the rate of page replacements with the rate of page
fetches. It can do this in either of two different ways, which lead to the two major
categories of replacement policies, local replacement and global replacement.

Local replacement keeps the rate of page evictions and page fetches balanced indi-
vidually for each process. If a process incurs many page faults, it will have to relinquish
many of its own page frames, rather than pushing other process’s pages out of their
frames. The replacement policy chooses which page frames to free only from those
held by a particular process. A separate allocation policy decide how many page frames
each process is allowed.

hailperin-163001 book December 2, 2005 12:39

208 ! Chapter 6 Virtual Memory

Global replacement keeps the rate of page evictions and page fetches balanced only
on a system-wide basis. If a process incurs many page faults, other process’s pages may
be evicted from their frames. The replacement policy chooses which page frames to free
from all the page frames, regardless which processes they are used by. No separate page
frame allocation policy is needed, because the replacement policy and fetch policy will
naturally wind up reallocating page frames between processes.

Of the operating systems popular today, Microsoft Windows uses local replace-
ment, whereas all the members of the UNIX family, including Linux and Mac OS X,
use global replacement. Microsoft’s choice of a local replacement policy for Windows
was part of a broader pattern of following the lead of Digital Equipment Corpora-
tion’s VMS operating system, which has since become HP’s OpenVMS. The key reason
why VMS’s designers chose local replacement was to prevent poor locality of reference
in one process from greatly hurting the performance of other processes. Arguably, this
performance isolation is less relevant for a typical Windows desktop or server workload
than for VMS’s multi-user real-time and timesharing workloads. Global replacement is
simpler, and it more flexibly adapts to processes whose memory needs are not known
in advance. For these reasons, it tends to be more efficient.

Both local and global replacement policies may be confronted with a situation
where the total size of the processes’ working sets exceeds the number of page frames
available. In the case of local replacement, this manifests itself when the allocation
policy cannot allocate a reasonable number of page frames to each process. In the case
of global replacement, an excessive demand for memory is manifested as thrashing,
that is, by the system spending essentially all its time in paging and process switching,
producing extremely low throughput.

The traditional solution to excess memory demand is swapping. The operating sys-
tem picks some processes to evict entirely from memory, writing all their data to disk.
Moreover, it removes those processes’ threads from the scheduler’s set of runnable
threads, so that they will not compete for memory space. After running the remain-
ing processes for a while, the operating system swaps some of them out and some of
the earlier victims back in. Swapping adds to system complexity and makes scheduling
much choppier; therefore, some global replacement systems such as Linux omit it and
rely on users to steer clear of thrashing. Local replacement systems such as Microsoft
Windows, on the other hand, have little choice but to include swapping. For sim-
plicity, I will not discuss swapping further in this text. You should know what it is,
however, and should also understand that some people incorrectly call paging swap-
ping; for example, you may hear of Linux swapping, when it really is paging. That is,
Linux is moving individual pages of a process’s address space to disk and back, rather
than moving the entire address space.

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 209

Having seen some of the broader context into which replacement policies fit, it is
time to consider some specific policies. I will start with one that is unrealistic but which
provides a standard against which other, more realistic policies can be measured. If
the operating system knew in advance the full sequence of virtual memory accesses, it
could select for replacement the page that has its next use furthest in the future. This
turns out to be more than just intuitively appealing: one can mathematically prove
that it optimizes the number of demand fetches. Therefore, this replacement policy is
known as optimal replacement (OPT).

Real operating systems don’t know future page accesses in advance. However, they
may have some data that allows the probability of different page accesses to be esti-
mated. Thus, a replacement policy could choose to evict the page estimated to have
the longest time until it is next used. As one special case of this, consider a program
that distributes its memory accesses across the pages randomly but with unequal prob-
abilities, so that some pages are more frequently accessed than others. Suppose that
these probabilities shift only slowly. In that case, pages which have been accessed fre-
quently in the recent past are likely to be accessed again soon, and conversely, those
that have not been accessed in a long while are unlikely to be accessed soon. As such,
it makes sense to replace the page that has gone the longest without being accessed.
This replacement policy is known as Least Recently Used (LRU).

LRU replacement is more realistic than OPT, because it uses only information about
the past, rather than about the future. However, even LRU is not entirely realistic,
because it requires keeping a list of page frames in order by most recent access time and
updating that list on every memory access. Therefore, LRU is used much as OPT is, as a
standard against which to compare other policies. However, LRU is not a gold standard
in the same way that OPT is; while OPT is optimal among all policies, LRU may not
even be optimal among policies relying only on past activity. Real processes do not
access pages randomly with slowly shifting probability distributions. For example, a
process might repeatedly loop through a set of pages, in which case LRU will perform
terribly, replacing the page that will be reused soonest. Nonetheless, LRU tends to
perform reasonably well in many realistic settings; therefore, many other replacement
policies try to approximate it. While they may not replace the least recently used page,
they will at least replace a page that hasn’t been used very recently.

Before considering realistic policies that approximate LRU, I should introduce
one other extremely simple policy, which can serve as a foundation for an LRU-
approximating policy, though it isn’t one itself. The simple policy is known as first
in, first out replacement (FIFO). The name tells the whole story: the operating system
chooses for replacement whichever page frame has been holding its current page the
longest. Note the difference between FIFO and LRU; FIFO chooses the page that was

hailperin-163001 book December 2, 2005 12:39

210 ! Chapter 6 Virtual Memory

mOPT

1

m

2

1
h

1

1

2
m

3

1

2
h

1

1

3
m

2

1

3
h

3

2

3

2

3

mLRU m
1

h
1

2
m

1

2
h

1

3
m

1

3
m

1

2

3

2

mFIFO m
1

h
1

2
m

1

2
m

3

2
m

3

1
m

2

1

2

3

Figure 6.19 In this comparison of the OPT, LRU, and FIFO replacement policies, each pair of boxes
represents the two page frames available on an unrealistically small system. The numbers within the
boxes indicate which page is stored in each page frame. The numbers across the top are the reference
sequence, and the letters h and m indicate hits and misses. In this example, LRU performs better
than FIFO, in that it has one more hit. OPT performs even better, with three hits.

fetched the longest ago, even if it continues to be in frequent use, whereas LRU chooses
the page that has gone the longest without access. Figure 6.19 shows an example
where LRU outperforms FIFO and is itself outperformed by OPT. This performance
ordering is not universal; in Exercises 6.11 and 6.12, you can show that FIFO some-
times outperforms LRU and that OPT does not always perform strictly better than
the others.

FIFO is not a very smart policy; in fact, early simulations showed that it performs
comparably to random replacement. Beyond this mediocre performance, one sign that
FIFO isn’t very smart is that it suffers from Belady’s anomaly: increasing the number of
page frames available may increase the number of page faults, rather than decreasing
it as one would expect. In Exercise 6.13, you can generate an example of this counter-
intuitive performance phenomenon.

Both OPT and LRU are immune from Belady’s anomaly, as are all other member
of the class of stack algorithms. A stack algorithm is a replacement policy with the
property that if you run the same sequence of page references on two systems using
that replacement policy, one with n page frames and the other with n + 1, then at
each point in the reference sequence the n pages that occupy page frames on the first
system will also be resident in page frames on the second system. For example, with the
LRU policy, the n most recently accessed pages will be resident in one system, and the
n +1 most recently accessed pages will be resident in the other. Clearly the n +1 most

hailperin-163001 book December 2, 2005 12:39

6.4 Policies for Virtual Memory ! 211

recently accessed pages include the n most recently accessed pages. In Exercise 6.14,
you can come up with a similar justification for my claim that OPT is a stack algorithm.

Recall that at the beginning of this subsection, I indicated that page frames chosen
for replacement are not immediately reused, but rather enter an inventory of free page
frames. The operating system can recover a page from this inventory without reading
from disk, if the page is accessed again before the containing page frame is reused.
This refinement turns out to dramatically improve the performance of FIFO. If FIFO
evicts a page that is frequently used, chances are good that it will be faulted back in
before the page frame is reused. At that point, the operating system will put it at the
end of the FIFO list, so it will not be replaced again for a while. Essentially, the FIFO
policy places pages on probation, but those that are accessed while on probation aren’t
actually replaced. Thus, the pages that wind up actually replaced are those that were
not accessed recently, approximating LRU. This approximation to LRU, based on FIFO,
is known as Segmented FIFO (SFIFO).

To enable smarter replacement policies, some MMUs provide a reference bit in each
page table entry. Every time the MMU translates an address, it sets the corresponding
page’s reference bit to 1. (If the address translation is for a write to memory, the MMU
also sets the dirty bit that I mentioned earlier.) The replacement policy can inspect
the reference bits and set them back to 0. In this way, the replacement policy obtains
information on which pages were recently used. Reference bits are not easy to imple-
ment efficiently, especially in multiprocessor systems; thus, some systems omit them.
However, when they exist, they allow the operating system to find whether a page is
in use more cheaply than by putting it on probation and seeing whether it gets faulted
back in.

One replacement policy that uses reference bits to approximate LRU is clock replace-
ment. In clock replacement, the operating system considers the page frames cyclically,
like the hand of a clock cycling among the numbered positions. When the replacement
policy’s clock hand is pointing at a particular page, the operating system inspects that
page’s reference bit. If the bit is 0, the page has not been referenced recently and so is
chosen for replacement. If the bit is 1, the operating system resets it to 0 and moves the
pointer on to the next candidate. That way, the page has a chance to prove its utility,
by having its reference bit set back to 1 before the pointer comes back around. As a
refinement, the operating system can also take the dirty bit into account, as follows:

• reference = 1: set reference to 0 and move on to the next candidate

• reference = 0 and dirty = 0: choose this page for replacement

• reference = 0 and dirty = 1: start writing the page out to disk and move on to the
next candidate; when the writing is complete, set dirty to 0

hailperin-163001 book December 2, 2005 12:39

212 ! Chapter 6 Virtual Memory

Replacement policies such as FIFO and clock replacement can be used locally to
select replacement candidates from within a process, as well as globally. For example,
some versions of Microsoft Windows use clock replacement as the local replacement
policy on systems where reference bits are available, and FIFO otherwise.

6.5 Security and Virtual Memory
Virtual memory plays a central role in security because it provides the mechanism for
equipping each process with its own protected memory. Because this is the topic of
Chapter 7, I will not discuss it further here. I will also defer most other security issues
to that chapter, because they have close relationships with the process concept and
with protection. However, there is one classic virtual memory security issue that I can
best discuss here, which is particularly relevant to application programmers.

Recall that the most traditional use of virtual memory is to simulate having lots of
RAM by moving inactive pages to disk. This can create a security problem if a program
processes confidential data that should not be permanently stored. For high-security
applications, you may not want to rely on the operating system to guard the data
that is on disk. Instead, you may want to ensure the sensitive information is never
written to disk. That way, even if an adversary later obtains physical possession of the
disk drive and can directly read all its contents, the sensitive information will not be
available.

Many cryptographic systems are designed around this threat model, in which
disks are presumed to be subject to theft. As a familiar example, most systems do not
store login passwords on disk. Instead, they store the results of feeding the passwords
through a one-way function. That suffices for checking entered passwords without
making the passwords themselves vulnerable to exposure. Programs such as the login
program and the password-changing program store the password only temporarily in
main memory.

Application programmers may think their programs keep sensitive data only tem-
porarily in volatile main memory and never store it out to disk. The programmers may
even take care to overwrite the memory afterward with something safe, such as zeros.
Even so, a lasting record of the confidential data may be on the disk if the virtual mem-
ory system wrote out the page in question during the vulnerable period. Because the
virtual memory is intentionally operating invisibly behind the scenes, the application
programmers will never know.

To protect your programs against this vulnerability, you need to forbid the operat-
ing system from writing a sensitive region of memory out to disk. In effect, you want
to create an exception to the normal replacement policy, in which certain pages are

hailperin-163001 book December 2, 2005 12:39

Exercises ! 213

never chosen for replacement. The POSIX standard API contains two procedures you
can use for this purpose, mlock and mlockall. Unfortunately, overuse of these pro-
cedures could tie up all the physical memory, so only privileged processes are allowed
to use them. Of course, some programs handling sensitive information, such as the
login program, need to run with special privileges anyway for other reasons.

Exercises
6.1 In Section 6.1, I introduced an analogy with an executive and a file clerk. Extend

this analogy to a clerk serving multiple executives. Give a plausible scenario
where the clerk might need to understand that two executives are referring to
two different documents, even though they are using the same name for the
documents. Give another plausible scenario where two executives would use dif-
ferent names to refer to the same document. Explain how the clerk would cope
with these scenarios. What is the connection to virtual memory?

6.2 The file containing an executable program generally contains not only the read-
only text of the program, but also the initial contents for some writable data
structures. Explain how and why COW could be used for this writable region.

6.3 I mentioned that typical page sizes have grown over the decades. Brainstorm
considerations that would make smaller pages better than larger pages and other
considerations that would make larger pages better than smaller. Now think
about what has changed over the decades. Can you identify any argument favor-
ing small pages that has weakened over time? Can you identify any argument
favoring large pages that has strengthened over time? Presumably, these factors
account for the historical trend in page sizes. On the other hand, you may also be
able to identify one or more factors that would have suggested the reverse trend;
if so, they were presumably outweighed.

6.4 The previous exercise concerns factors influencing the historical trend in page
sizes. On the other hand, there are also real-world influences causing page sizes
to remain unchanged for many years. Can you think of what some of these influ-
ences might be?

6.5 Assume a page size of 4 KB and the page mapping shown in Figure 6.10 on
page 181. What are the virtual addresses of the first and last 4-byte words in
page 6? What physical addresses do these translate into?

6.6 Suppose the rightmost k bits within an address are used to represent an offset
within a page, with the remaining bits used for the page number. Consider the

hailperin-163001 book December 2, 2005 12:39

214 ! Chapter 6 Virtual Memory

location at offset j within page n. Give a mathematical formula for the address
of this location.

6.7 Suppose the rightmost k bits within a virtual or physical address are used to rep-
resent an offset within a page or page frame, with the remaining bits used for the
page number or page frame number. Suppose that for all integers n, page number
n is mapped by the page table into page frame number f (n). Give a mathematical
formula for the physical address that corresponds with virtual address v.

6.8 Suppose an architecture uses 64-bit virtual addresses and 1-MB pages. Suppose
that a linear page table is stored in full for each process, containing a page table
entry for every page number. Suppose that the size of each page table entry is
only 4 bytes. How large would each page table be?

6.9 At the lower right of Figure 6.13 on page 191 are page numbers 1047552 and
1047553. Explain how these page numbers were calculated.

6.10 My discussion of IA-32 multilevel page tables is based on the original version of
the architecture, which limited physical addresses to 32 bits. Newer IA-32 proc-
essors offer an optional Physical Address Extension (PAE) mode in order to address
up to sixteen times as much RAM. One consequence of this is that page table
entries (and page directory entries) are increased to 8 bytes instead of 4. Each
page and chunk of page table is still 4 KB.
(a) How many entries can each chunk of page table or page directory now hold?
(b) How big a virtual address range does each chunk of page table now span? (A

page directory entry can also directly point to a large page frame this size,
just as without PAE it can directly point to a 4-MB page frame.)

(c) How big a virtual address range can each page directory now span?
(d) Because each page directory can no longer span the full 4-GB virtual address

range, PAE requires adding a third level to the top of the tree. The newly
added root node doesn’t have as large a branching factor as you calculated
in part (a) for the preexisting two levels. How many page directories does the
root point to?

(e) Draw a diagram analogous to Figure 6.13 on page 191 for PAE mode.

6.11 Figure 6.19 on page 210 shows a small example where LRU has a lower miss rate
than FIFO replacement. Develop an example of similar size in which FIFO has a
lower miss rate than LRU.

6.12 In Figure 6.19 on page 210, both LRU and FIFO replacement have higher miss
rates than OPT. Develop an example of similar size in which at least one of LRU
and FIFO has as low a miss rate as OPT does.

6.13 Show a small example of Belady’s anomaly. That is, give a small integer, n, and a
short sequence of page number references such that when the FIFO replacement

hailperin-163001 book December 2, 2005 12:39

Exploration Projects ! 215

policy is given n initially empty page frames, fewer misses result from the refer-
ence sequence than when n + 1 initially empty page frames are used.

6.14 Justify my claim that OPT is a stack algorithm. You may assume that ties are
broken by replacing the lowest numbered page of those involved in the tie.

6.15 When conducting measurement studies, it is always good to conduct multiple
trials of any experiment, rather than reporting data only from a single run. In the
particular case of a study of how much paging is caused by a particular activity,
why is it important to reboot between each experimental run and the next?

Programming Projects
6.1 Write a program that loops many times, each time using an inner loop to access

every 4096th element of a large array of bytes. Time how long your program
takes per array access. Do this with varying array sizes. Are there any array sizes
when the average time suddenly changes? Write a report in which you explain
what you did, and the hardware and software system context in which you did
it, carefully enough that someone could replicate your results.

6.2 On a system (such as Linux or most versions of UNIX, including Mac OS X)
that supports the mmap and madvise (or posix_madvise) system calls, read the
online manual pages for them and write four simple C test programs that map a
large file into virtual memory. Two programs should use madvise to indicate ran-
dom access; one of them should then genuinely access the file randomly, whereas
the other should access all of it sequentially. The other two programs should use
madvise to indicate sequential access; again, one should behave sequentially
and one randomly. Time the programs, rebooting the computer before each run.
Write a report in which you explain what you did, and the hardware and software
system context in which you did it, carefully enough that someone could repli-
cate your results. Your report should draw some conclusions from your experi-
ments: does the correct use of madvise seem important to the performance of
your test system?

Exploration Projects
6.1 On a Linux system, you can find the files mapped into a process’s address space

by typing a command of the following form:

cat /proc/n/maps

where n is the process’s ID number. Read the documentation for proc in Sec-
tion 5 of the online manual in order to understand the output format. Then

hailperin-163001 book December 2, 2005 12:39

216 ! Chapter 6 Virtual Memory

look through the various processes’ maps to see if you can find a case where the
same file is mapped into two processes’ address spaces, but at different virtual
addresses. (On most Linux systems with a variety of networking software and so
forth, such cases will exist.)

6.2 On a Linux or UNIX system, including Mac OS X, you can find information
about processes by using the ps command. To include all processes, you need to
provide the option letters ax. If you give the letter l as an option, you will receive
additional columns of information about each process, including SIZE or VSZ
(the virtual memory size) and RSS (the resident set size, in physical memory). Use
the ps axl command and note the sizes. Presumably, the virtual size is always
bigger than the resident set size. If you calculate a ratio of the two sizes for each
process, what range do the ratios span? What is the median ratio?

6.3 If you compile and run the C program in Figure 6.20 on a Linux or UNIX system
(including Mac OS X), it will run the ps l command as in the preceding project,
and in the output you will be able to see its own virtual memory and resident
set sizes. The program contains a large zero-filled array, large_array, most of
which goes unused. How do the virtual and resident set sizes of this process com-
pare? If you change the size of large_array and recompile and run, which size
changes? What does the unit of measure seem to be?

6.4 Use the same command as in Exploration Project 6.1 to determine how sparse
some processes’ address spaces are. What fraction of the range from lowest
mapped address to highest mapped address belongs to any mapping? How many
contiguous address ranges are occupied and how many unoccupied holes are
there? Are the holes large enough that a linear or multilevel page table could
plausibly take advantage of them?

#include <stdlib.h>

int large_array[10000000];

int main(int argc, char *argv[]){
system("ps l"); /* note: letter l */
return large_array[0];

}

Figure 6.20 This C program, own-size.c, shows its own size, including the size of a large array
of zeros, by running the ps command.

hailperin-163001 book December 2, 2005 12:39

Exploration Projects ! 217

6.5 In Section 6.2.8, I estimated the relative price per gigabyte and speed of disk ver-
sus RAM. Look up some prices and specifications on the web and make your own
estimates of these ratios. Explain the assumptions you make and data you use.

6.6 As explained in the text, Linux normally uses a form of clustered paging, also
known as read around. Using the madvise procedure, you can override this nor-
mal behavior for a particular region of virtual memory, marking it as randomly
accessed (which turns off all prepaging) or sequentially accessed (which switches
to a variant form of prepaging). Instead of experimenting with these modes selec-
tively, as in Programming Project 6.2, you can experiment with changing all vir-
tual memory to use one of them, provided you have a system on which you can
build and install Linux kernels. Near the top of the kernel source file include/
linux/mm.h, you will find the definitions of VM_NormalReadHint(v),
VM_SequentialReadHint(v), and VM_RandomReadHint(v). Change these
definitions so that one of them is defined as 1 and the other two are defined
as 0. Now all virtual memory areas will be treated in accordance with the mode
you defined as 1, independent of any uses of madvise. Build the kernel with your
change and conduct an experiment in which you compare the performance of
some programs running under your variant kernel with their performance run-
ning under a normal kernel. (You may want to build more than one variant kernel
in order to try out more than one of the modes.) Write a report clearly presenting
your results and carefully explaining what you did, and in which hardware and
software system context you did it, so that someone else could replicate your
results. (This project was written when the kernel was at version 2.6.11; how-
ever, the relevant aspects of the source code seem to be stable across quite a few
versions.)

6.7 In the end-of-chapter notes, I trace paging back to seminal articles published in
the early 1960s by the designers of the Atlas computer, and I also report that this
computer was the first to use a small fast memory and a large slow memory to
simulate a large fast memory. However, in those same notes, I also cite a recent
article by Jessen, which brought to light an unpublished doctoral dissertation by
Güntsch from 1956. This dissertation proposed a similar approach to simulating
a large fast memory. Read these articles and write a comparison of Güntsch’s work
with that of the Atlas team. Beyond the dates, the most obvious difference is that
one was an unpublished proposal for an unbuilt machine and had no apparent
influence, whereas the other resulted in both an actual machine and publications
that were frequently referenced by later writers. However, you should go beyond
these surface issues and compare the substance of the two proposals. Which is
more like today’s virtual memory?

hailperin-163001 book December 2, 2005 12:39

218 ! Chapter 6 Virtual Memory

Notes
I introduced the virtual memory concept by stressing the distinction between addresses
as names for information and as locations of storage. Fotheringham made this point
in one of the earliest papers on virtual memory, concerning the pioneering Atlas com-
puter [53]. Dennis made the same point at greater length a few years later [43]. These
two papers from the 1960s were seminal with regard to paging and segmentation,
respectively. At the end of that decade, Denning wrote an influential survey of the
whole virtual memory field, including both paging and segmentation [42].

Many of the uses I list for virtual memory can be traced back to the earliest papers.
Most famously, the simulation of a large fast memory by a small fast memory and a
large slow external storage device was first used in the Atlas computer [53, 80]. (See
also Exploration Project 6.7 with regard to a related mechanism proposed even earlier
by Güntsch, which Jessen has recently described [76].) In this context, Denning devel-
oped the working set concept [41]. One virtual memory application of more modern
vintage is message passing with COW; for a recent example, see Mac OS X [6].

While discussing applications of virtual memory, I touched on a couple of imple-
mentation issues. The compromise approach to dirty bits (and reference bits) employed
in Itanium can be found in reference [75]. A readable example of the performance
impact of cache bypassing when prezeroing pages can be found in a paper on Linux
for the PowerPC [49].

In introducing the representations of address mappings, I mentioned that mixing
page sizes can be beneficial. One important body of research on this topic is Talluri’s
dissertation [127].

Specific information on each of the example systems I mentioned is available:
VAX/VMS [88], Itanium [75], AMD64 (including IA-32 compatibility) [3], Multics [14,
38], and Microsoft Windows [109].

Hashed page tables are part of an interesting historical design progression, starting
with the Atlas and continuing on past hashed page tables to clustered page tables,
which have yet to be deployed commercially. The Atlas [53, 80] used a fully associative
inverted page table. That is, it had an array with one storage location per page frame;
element n contained the page number resident in page frame n. To locate a given
page number (for address translation), special hardware checked all the entries in the
inverted page table in parallel. This hardware does not scale up to large numbers of
page frames. Therefore, the IBM System/38 replaced the parallel search with a hash
table, while still retaining the inverted page table itself [72]. Each entry in the hash
table pointed to an entry in the inverted page table. HP originally adopted this same
approach for their Precision Architecture, but then recognized that the hash table and
the inverted page table could be merged together, forming today’s hashed page table,

hailperin-163001 book December 2, 2005 12:39

Notes ! 219

as described by Huck and Hays [74]. (Huck and Hays also introduced the notion of
software TLB.)

Recall that linear and multilevel page tables store page table entries consecutively
for a chunk of sequential page numbers (for example, 1024 pages). These chunks
may contain some unused entries, wasting space. Hashed page tables, on the other
hand, store each page table entry individually, so that no space is wasted on unused
entries. However, each entry needs to be significantly larger. The optimal balance point
for space might be somewhere between the two extremes. Also, if page table refer-
ences exhibit spatial locality, keeping at least a small cluster of consecutive pages’
entries adjacent could speed access. Based on these observations, Talluri, Hill, and
Khalidi [126] proposed clustered page tables, a variant of hashed page tables where each
entry in the hash table contains page table entries for several consecutive pages.

Kessler and Hill [79] evaluated page coloring and bin hopping, as well as other
approaches to cache-conscious page placement.

Belady [11] published an early comparison of replacement policies, including FIFO,
LRU, and a more complex version of OPT he called MIN. In a separate publication [12],
he and coworkers showed that FIFO was subject to the anomaly which has come to
bear his name; see also reference [100]. Mattson et al. [92] refined OPT to its modern
form, proved its optimality, introduced the concept of stack algorithms, and proved
they were immune from Belady’s anomaly. Aho, Denning, and Ullman [2] analyzed
optimality under probabilistic models; in particular, they showed that LRU approxi-
mates optimal replacement given slowly varying reference probabilities. Turner and
Levy [130] showed how Segmented FIFO page replacement can approximate LRU.
Their work was in the context of VMS’s local replacement. A similar replacement pol-
icy, again using cheap reclamation of recently freed pages as a substitute for reference
bits, but this time global and patterned on clock replacement, was used by Babaoglu
and Joy [8] shortly thereafter.

