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Threads

C H A P T E R

2

2.1 Introduction
Computer programs consist of instructions, and computers carry out sequences of
computational steps specified by those instructions. We call each sequence of compu-
tational steps that are strung together one after another a thread. The simplest pro-
grams to write are single-threaded, with instructions that should be executed one
after another in a single sequence. However, in Section 2.2, you will learn how to
write programs that produce more than one thread of execution, each an indepen-
dent sequence of computational steps, with few if any ordering constraints between
the steps in one thread and those in another. Multiple threads can also come into
existence by running multiple programs, or by running the same program more than
once.

Note the distinction between a program and a thread; the program contains
instructions, whereas the thread consists of the execution of those instructions. Even
for single-threaded programs, this distinction matters. If a program contains a loop,
then a very short program could give rise to a very long thread of execution. Also,
running the same program ten times will give rise to ten threads, all executing one
program. Figure 2.1 summarizes how threads arise from programs.

! 19 "
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Single-threaded program Multiple single-threaded programs

Multiple runs of one single-threaded programMulti-threaded program

Spawn

Thread Thread A

Thread A

Thread B

Thread B

Thread A

Thread B

Figure 2.1 Programs give rise to threads

Each thread has a lifetime, extending from the time its first instruction execution
occurs until the time of its last instruction execution. If two threads have overlapping
lifetimes, as illustrated in Figure 2.2, we say they are concurrent. One of the most funda-
mental goals of an operating system is to allow multiple threads to run concurrently
on the same computer. That is, rather than waiting until the first thread has com-
pleted before a second thread can run, it should be possible to divide the computer’s
attention between them. If the computer hardware includes multiple processors, then
it will naturally be possible to run threads concurrently, one per processor. However,
the operating system’s users will often want to run more concurrent threads than the
hardware has processors, for reasons described in Section 2.3. Therefore, the operating
system will need to divide each processor’s attention between multiple threads. In this
introductory textbook I will mostly limit myself to the case of all the threads needing
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Sequential threads

Concurrent threads running simultaneously on two processors

Concurrent threads (with gaps in their executions) interleaved on one processor

Figure 2.2 Sequential and concurrent threads

to be run on a single processor. I will explicitly indicate those places where I do address
the more general multi-processor case.

In order to make the concept of concurrent threads concrete, Section 2.2 shows
how to write a program that spawns multiple threads each time the program is run.
Once you know how to create threads, I will explain in Section 2.3 some of the reasons
why it is desirable to run multiple threads concurrently and will offer some typical
examples of the uses to which threads are put.

These first two sections explain the application programmer’s view of threads:
how and why the programmer would use concurrent threads. This sets us up for the
next question: how does the operating system support the application programmer’s
desire for concurrently executing threads? In Sections 2.4 and 2.5, we will examine
how the system does so. In this chapter, we will consider only the fundamentals of
how the processor’s attention is switched from one thread to another. Some of the
related issues I address in other chapters include deciding which thread to run at
each point (Chapter 3) and controlling interaction among the threads (Chapters 4,
5, 6, and 7). Also, as explained in Chapter 1, I will wait until Chapter 7 to explain
the protection boundary surrounding the operating system. Thus, I will need to wait
until that chapter to distinguish threads that reside entirely within that boundary,
threads provided from inside the boundary for use outside of it, and threads residing
entirely outside the boundary (known as user-level threads or, in Microsoft Windows,
fibers).

Finally, the chapter concludes with the standard features of this book: a brief
discussion of security issues, followed by exercises, programming and exploration
projects, and notes.
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2.2 Example of Multi-Threaded Programs
Whenever a program initially starts running, the computer carries out the program’s
instructions in a single thread. Therefore, if the program is intended to run in multiple
threads, the original thread needs at some point to spawn off a child thread that does
some actions, while the parent thread continues to do others. (For more than two
threads, the program can repeat the thread-creation step.) Most programming lan-
guages have an application programming interface (or API) for threads that includes
a way to create a child thread. In this section, I will use the Java API and the API for C
that is called pthreads, for POSIX threads. (As you will see throughout the book, POSIX
is a comprehensive specification for UNIX-like systems, including many APIs beyond
just thread creation.)

Realistic multi-threaded programming requires the control of thread interactions,
using techniques I show in Chapter 4. Therefore, my examples in this chapter are quite
simple, just enough to show the spawning of threads.

To demonstrate the independence of the two threads, I will have both the parent
and the child thread respond to a timer. One will sleep three seconds and then print
out a message. The other will sleep five seconds and then print out a message. Because
the threads execute concurrently, the second message will appear approximately two
seconds after the first. (In Programming Projects 2.1, 2.2, and 2.3, you can write a
somewhat more realistic program, where one thread responds to user input and the
other to the timer.)

Figure 2.3 shows the Java version of this program. The main program first cre-
ates a Thread object called childThread. The Runnable object associated with the
child thread has a run method that sleeps three seconds (expressed as 3000 milli-
seconds) and then prints a message. This run method starts running when the main
procedure invokes childThread.start(). Because the run method is in a separate
thread, the main thread can continue on to the subsequent steps, sleeping five seconds
(5000 milliseconds) and printing its own message.

Figure 2.4 is the equivalent program in C, using the pthreads API. The child

procedure sleeps three seconds and prints a message. The main procedure creates
a child_thread running the child procedure, and then itself sleeps five seconds
and prints a message. The most significant difference from the Java API is that
pthread_create both creates the child thread and starts it running, whereas in Java
those are two separate steps.

In addition to portable APIs, such as the Java and pthreads APIs, many systems
provide their own non-portable APIs. For example, Microsoft Windows has the Win32
API, with procedures such as CreateThread and Sleep. In Programming Project 2.4,
you can modify the program from Figure 2.4 to use this API.
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public class Simple2Threads {
public static void main(String args[]){

Thread childThread = new Thread(new Runnable(){
public void run(){

sleep(3000);
System.out.println("Child is done sleeping 3 seconds.");

}
});

childThread.start();
sleep(5000);
System.out.println("Parent is done sleeping 5 seconds.");

}

private static void sleep(int milliseconds){
try{

Thread.sleep(milliseconds);
} catch(InterruptedException e){

// ignore this exception; it won’t happen anyhow
}

}
}

Figure 2.3 A simple multi-threaded program in Java

#include <pthread.h>
#include <signal.h>
#include <stdio.h>

static void *child(void *ignored){
sleep(3);
printf("Child is done sleeping 3 seconds.\n");
return NULL;

}

int main(int argc, char *argv[]){
pthread_t child_thread;
int code;

code = pthread_create(&child_thread, NULL, child, NULL);
if(code){

fprintf(stderr, "pthread_create failed with code %d\n", code);
}
sleep(5);
printf("Parent is done sleeping 5 seconds.\n");
return 0;

}

Figure 2.4 A simple multi-threaded program in C

! 23 "
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2.3 Reasons for Using Concurrent Threads
You have now seen how a single execution of one program can result in more than one
thread. Presumably, you were already at least somewhat familiar with generating mul-
tiple threads by running multiple programs, or by running the same program multiple
times. Regardless of how the threads come into being, we are faced with a question.
Why is it desirable for the computer to execute multiple threads concurrently, rather
than waiting for one to finish before starting another? Fundamentally, most uses for
concurrent threads serve one of two goals:

Responsiveness: allowing the computer system to respond quickly to something exter-
nal to the system, such as a human user or another computer system. Even if one
thread is in the midst of a long computation, another thread can respond to the
external agent. Our example programs in Section 2.2 illustrated responsiveness:
both the parent and the child thread responded to a timer.

Resource utilization: keeping most of the hardware resources busy most of the time.
Even if one thread has no need for a particular piece of hardware, another may be
able to make productive use of it.

Each of these two general themes has many variations, some of which we explore in
the remainder of this section. A third reason why programmers sometimes use con-
current threads is as a tool for modularization. With this, a complex system may be
decomposed into a group of interacting threads.

Let’s start by considering the responsiveness of a web server, which provides many
client computers with the specific web pages they request over the Internet. Whenever
a client computer makes a network connection to the server, it sends a sequence of
bytes that contain the name of the desired web page. Therefore, before the server pro-
gram can respond, it needs to read in those bytes, typically using a loop that continues
reading in bytes from the network connection until it sees the end of the request. Sup-
pose one of the clients is connecting using a very slow network connection, perhaps
via a dial-up modem. The server may read the first part of the request and then have
to wait a considerable length of time before the rest of the request arrives over the net-
work. What happens to other clients in the meantime? It would be unacceptable for a
whole web site to grind to a halt, unable to serve any clients, just waiting for one slow
client to finish issuing its request. One way some web servers avoid this unacceptable
situation is by using multiple threads, one for each client connection, so that even if
one thread is waiting for data from one client, other threads can continue interact-
ing with the other clients. Figure 2.5 illustrates the unacceptable single-threaded web
server and the more realistic multi-threaded one.
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Figure 2.5 Single-threaded and multi-threaded web servers

On the client side, a web browser may also illustrate the need for responsiveness.
Suppose you start loading in a very large web page, which takes considerable time to
download. Would you be happy if the computer froze up until the download finished?
Probably not. You expect to be able to work on a spreadsheet in a different window, or
scroll through the first part of the web page to read as much as has already downloaded,
or at least click on the Stop button to give up on the time-consuming download. Each
of these can be handled by having one thread tied up loading the web page over
the network, while another thread is responsive to your actions at the keyboard and
mouse.

This web browser scenario also lets me foreshadow later portions of the textbook
concerning the controlled interaction between threads. Note that I sketched several
different things you might want to do while the web page downloaded. In the first
case, when you work on a spreadsheet, the two concurrent threads have almost noth-
ing to do with one another, and the operating system’s job, beyond allowing them
to run concurrently, will mostly consist of isolating each from the other, so that a
bug in the web browser doesn’t overwrite part of your spreadsheet, for example. This
is generally done by encapsulating the threads in separate protection environments
known as processes, as we will discuss in Chapters 6 and 7. (Some systems call proc-
esses tasks, while others use task as a synonym for thread.) If, on the other hand, you
continue using the browser’s user interface while the download continues, the concur-
rent threads are closely related parts of a single application, and the operating system
need not isolate the threads from one another. However, it may still need to provide
mechanisms for regulating their interaction. For example, some coordination between
the downloading thread and the user-interface thread is needed to ensure that you can
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scroll through as much of the page as has been downloaded, but no further. This coor-
dination between threads is known as synchronization and is the topic of Chapters 4
and 5.

Turning to the utilization of hardware resources, the most obvious scenario is when
you have a dual-processor computer. In this case, if the system ran only one thread at a
time, only half the processing capacity would ever be used. Even if the human user of
the computer system doesn’t have more than one task to carry out, there may be useful
housekeeping work to keep the second processor busy. For example, most operating
systems, if asked to allocate memory for an application program’s use, will store all
zeros into the memory first. Rather than holding up each memory allocation while
the zeroing is done, the operating system can have a thread that proactively zeros
out unused memory, so that when needed, it will be all ready. If this housekeeping
work (zeroing of memory) were done on demand, it would slow down the system’s
real work; by using a concurrent thread to utilize the available hardware more fully,
the performance is improved. This example also illustrates that not all threads need
to come from user programs. A thread can be part of the operating system itself, as in
the example of the thread zeroing out unused memory.

Even in a single-processor system, resource utilization considerations may jus-
tify using concurrent threads. Remember that a computer system contains hardware
resources, such as disk drives, other than the processor. Suppose you have two tasks to
complete on your PC: you want to scan all the files on disk for viruses, and you want
to do a complicated photo-realistic rendering of a three-dimensional scene including
not only solid objects, but also shadows cast on partially transparent smoke clouds.
From experience, you know that each of these will take about an hour. If you do one
and then the other, it will take two hours. If instead you do the two concurrently—
running the virus scanner in one window while you run the graphics rendering pro-
gram in another window—you may be pleasantly surprised to find both jobs done in
only an hour and a half.

The explanation for the half-hour savings in elapsed time is that the virus scan-
ning program spends most of its time using the disk drive to read files, with only mod-
est bursts of processor activity each time the disk completes a read request, whereas
the rendering program spends most of its time doing processing, with very little disk
activity. As illustrated in Figure 2.6, running them in sequence leaves one part of the
computer’s hardware idle much of the time, whereas running the two concurrently
keeps the processor and disk drive both busy, improving the overall system efficiency.
Of course, this assumes the operating system’s scheduler is smart enough to let the
virus scanner have the processor’s attention (briefly) whenever a disk request com-
pletes, rather than making it wait for the rendering program. I will address this issue
in Chapter 3.
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Figure 2.6 Overlapping processor-intensive and disk-intensive activities

As you have now seen, threads can come from multiple sources and serve multiple
roles. They can be internal portions of the operating system, as in the example of
zeroing out memory, or part of the user’s application software. In the latter case, they
can either be dividing up the work within a multi-threaded process, such as the web
server and web browser examples, or can come from multiple independent processes,
as when a web browser runs in one window and a spreadsheet in another. Regardless
of these variations, the typical reasons for running the threads concurrently remain
unchanged: either to provide increased responsiveness or to improve system efficiency
by more fully utilizing the hardware. Moreover, the basic mechanism used to divide
the processor’s attention among multiple threads remains the same in these different
cases as well; I describe that mechanism in Sections 2.4 and 2.5. Of course, some cases
require the additional protection mechanisms provided by processes, which we discuss
in Chapters 6 and 7. However, even then, it is still necessary to leave off work on one
thread and pick up work on another.

2.4 Switching Between Threads
In order for the operating system to have more than one thread underway on a proc-
essor, the system needs to have some mechanism for switching attention between
threads. In particular, there needs to be some way to leave off from in the middle
of a thread’s sequence of instructions, work for a while on other threads, and then
pick back up in the original thread right where it left off. In order to explain thread
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switching as simply as possible, I will initially assume that each thread is executing
code that contains, every once in a while, explicit instructions to temporarily switch
to another thread. Once you understand this mechanism, I can then build on it for
the more realistic case where the thread contains no explicit thread-switching points,
but rather is automatically interrupted for thread switches.

Suppose we have two threads, A and B, and we use A1, A2, A3, and so forth as
names for the instruction execution steps that constitute A, and similarly for B. In this
case, one possible execution sequence might be as shown in Figure 2.7. As I will explain
subsequently, when thread A executes switchFromTo(A,B) the computer starts exe-
cuting instructions from thread B. In a more realistic example, there might be more
than two threads, and each might run for many more steps (both between switches
and overall), with only occasionally a new thread starting or an existing thread exiting.

thread A thread B
A1
A2
A3
switchFromTo(A,B)

B1
B2
B3
switchFromTo(B,A)

A4
A5
switchFromTo(A,B)

B4
B5
B6
B7
switchFromTo(B,A)

A6
A7
A8
switchFromTo(A,B)

B8
B9

Figure 2.7 Switching between threads
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Our goal is that the steps of each thread form a coherent execution sequence.
That is, from the perspective of thread A, its execution should not be much different
from one in which A1 through A8 occurred consecutively, without interruption, and
similarly for thread B’s steps B1 through B9. Suppose, for example, steps A1 and A2 load
two values from memory into registers, A3 adds them, placing the sum in a register,
and A4 doubles that register’s contents, so as to get twice the sum. In this case, we
want to make sure that A4 really does double the sum computed by A1 through A3,
rather than doubling some other value that thread B’s steps B1 through B3 happen to
store in the same register. Thus, we can see that switching threads cannot simply be
a matter of a jump instruction transferring control to the appropriate instruction in
the other thread. At a minimum, we will also have to save registers into memory and
restore them from there, so that when a thread resumes execution, its own values will
be back in the registers.

In order to focus on the essentials, let’s put aside the issue of how threads start
and exit. Instead, let’s focus just on the normal case where one thread in progress puts
itself on hold and switches to another thread where that other thread last left off, such
as the switch from A5 to B4 in the preceding example. To support switching threads,
the operating system will need to keep information about each thread, such as at what
point that thread should resume execution. If this information is stored in a block of
memory for each thread, then we can use the addresses of those memory areas to refer
to the threads. The block of memory containing information about a thread is called
a thread control block or task control block (TCB). Thus, another way of saying that we
use the addresses of these blocks is to say that we use pointers to thread control blocks
to refer to threads.

Our fundamental thread-switching mechanism will be the switchFromTo proce-
dure, which takes two of these thread control block pointers as parameters: one spec-
ifying the thread that is being switched out of, and one specifying the next thread,
which is being switched into. In our running example, A and B are pointer variables
pointing to the two threads’ control blocks, which we use alternately in the roles of
outgoing thread and next thread. For example, the program for thread A contains code
after instruction A5 to switch from A to B, and the program for thread B contains code
after instruction B3 to switch from B to A. Of course, this assumes that each thread
knows both its own identity and the identity of the thread to switch to. Later, we will
see how this unrealistic assumption can be eliminated. For now, though, let’s see how
we could write the switchFromTo procedure so that switchFromTo(A,B)would save
the current execution status information into the structure pointed to by A, read back
previously saved information from the structure pointed to by B, and resume where
thread B left off.



hailperin-163001 book October 18, 2005 10:23

30 ! Chapter 2 Threads

We already saw that the execution status information to save includes not only
a position in the program, often called the program counter (PC) or instruction pointer
(IP), but also the contents of registers. Another critical part of the execution status
for programs compiled with most higher level language compilers is a portion of the
memory used to store a stack, along with a stack pointer register that indicates the
position in memory of the current top of the stack. You likely have encountered this
form of storage in some prior course—computer organization, programing language
principles, or even introduction to computer science. If not, Appendix A provides the
information you will need before proceeding with the remainder of this chapter.

When a thread resumes execution, it must find the stack the way it left it. For
example, suppose thread A pushes two items on the stack and then is put on hold
for a while, during which thread B executes. When thread A resumes execution, it
should find the two items it pushed at the top of the stack—even if thread B did some
pushing of its own and has not yet gotten around to popping. We can arrange for
this by giving each thread its own stack, setting aside a separate portion of memory
for each of them. When thread A is executing, the stack pointer (or SP register) will be
pointing somewhere within thread A’s stack area, indicating how much of that area
is occupied at that time. Upon switching to thread B, we need to save away A’s stack
pointer, just like other registers, and load in thread B’s stack pointer. That way, while
thread B is executing, the stack pointer will move up and down within B’s stack area,
in accordance with B’s own pushes and pops.

Having discovered this need to have separate stacks and switch stack pointers, we
can simplify the saving of all other registers by pushing them onto the stack before
switching and popping them off the stack after switching, as shown in Figure 2.8.
We can use this approach to outline the code for switching from the outgoing thread
to the next thread, using outgoing and next as the two pointers to thread control
blocks. (When switching from A to B, outgoing will be A and next will be B. Later,
when switching back from B to A, outgoing will be B and next will be A.) We will use
outgoing->SP and outgoing->IP to refer to two slots within the structure pointed
to by outgoing, the slot used to save the stack pointer and the one used to save the
instruction pointer. With these assumptions, our code has the following general form:

push each register on the (outgoing thread’s) stack
store the stack pointer into outgoing->SP
load the stack pointer from next->SP
store label L’s address into outgoing->IP
load in next->IP and jump to that address

L:
pop each register from the (resumed outgoing thread’s) stack
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Figure 2.8 Saving registers in thread control blocks and per-thread stacks

Note that the code before the label (L) is done at the time of switching away from
the outgoing thread, whereas the code after that label is done later, upon resuming
execution when some other thread switches back to the original one.

This code not only stores the outgoing thread’s stack pointer away, but also restores
the next thread’s stack pointer. Later, the same code will be used to switch back.
Therefore, we can count on the original thread’s stack pointer to have been restored
when control jumps to label L. Thus, when the registers are popped, they will be
popped from the original thread’s stack, matching the pushes at the beginning of
the code.

We can see how this general pattern plays out in a real system, by looking at the
thread-switching code from the Linux operating system for the i386 architecture. (The
i386 architecture is also known as the x86 or IA-32; it is a popular processor architecture
used in standard personal computer processors such as the Pentium 4 and the Athlon.)
If you don’t want to see real code, you can skip ahead to the paragraph after the block
of assembly code. However, even if you aren’t familiar with i386 assembly language,
you ought to be able to see how this code matches the preceding pattern.

This is real code extracted from the Linux kernel, though with some peripheral
complications left out. The stack pointer register is named %esp, and when this code
starts running, the registers known as %ebx and %esi contain the outgoing and next

pointers, respectively. Each of those pointers is the address of a thread control block.
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The location at offset 812 within the TCB contains the thread’s instruction pointer,
and the location at offset 816 contains the thread’s stack pointer. (That is, these mem-
ory locations contain the instruction pointer and stack pointer to use when resuming
that thread’s execution.) The code surrounding the thread switch does not keep any
important values in most of the other registers; only the special flags register and the
register named %ebp need to be saved and restored. With that as background, here is
the code, with explanatory comments:

pushfl # pushes the flags on outgoing’s stack
pushl %ebp # pushes %ebp on outgoing’s stack
movl %esp,816(%ebx) # stores outgoing’s stack pointer
movl 816(%esi),%esp # loads next’s stack pointer
movl $1f,812(%ebx) # stores label 1’s address,

# where outgoing will resume
pushl 812(%esi) # pushes the instruction address

# where next resumes
ret # pops and jumps to that address

1: popl %ebp # upon later resuming outgoing,
# restores %ebp

popfl # restores the flags

Having seen the core idea of how a processor is switched from running one thread
to running another, we can now eliminate the assumption that each thread switch
contains the explicit names of the outgoing and next threads. That is, we want to get
away from having to name threads A and B in switchFromTo(A,B). It is easy enough
to know which thread is being switched away from, if we just keep track at all times
of the currently running thread, for example, by storing a pointer to its control block
in a global variable called current. That leaves the question of which thread is being
selected to run next. What we will do is have the operating system keep track of all
the threads in some sort of data structure, such as a list. There will be a procedure,
chooseNextThread(), which consults that data structure and, using some schedul-
ing policy, decides which thread to run next. In Chapter 3, I will explain how this
scheduling is done; for now, take it as a black box. Using this tool, one can write a
procedure, yield(), which performs the following four steps:

outgoing = current;
next = chooseNextThread();
current = next; // so the global variable will be right
switchFromTo(outgoing, next);

Now, every time a thread decides it wants to take a break and let other threads run
for a while, it can just invoke yield(). This is essentially the approach taken by
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real systems, such as Linux. One complication in a multiprocessor system is that the
current thread needs to be recorded on a per-processor basis.

Thread switching is often called context switching, because it switches from the
execution context of one thread to that of another thread. Many authors, however,
use the phrase context switching differently, to refer to switching processes with their
protection contexts—a topic we will discuss in Chapter 7. If the distinction matters,
the clearest choice is to avoid the ambiguous term context switching and use the more
specific thread switching or process switching.

Thread switching is the most common form of dispatching a thread, that is, of
causing a processor to execute it. The only way a thread can be dispatched without a
thread switch is if a processor is idle.

2.5 Preemptive Multitasking
At this point, I have explained thread switching well enough for systems that employ
cooperative multitasking, that is, where each thread’s program contains explicit code
at each point where a thread switch should occur. However, more realistic operating
systems use what is called preemptive multitasking, in which the program’s code need
not contain any thread switches, yet thread switches will nonetheless automatically
be performed from time to time.

One reason to prefer preemptive multitasking is because it means that buggy code
in one thread cannot hold all others up. Consider, for example, a loop that is expected
to iterate only a few times; it would seem safe, in a cooperative multitasking system,
to put thread switches only before and after it, rather than also in the loop body.
However, a bug could easily turn the loop into an infinite one, which would hog the
processor forever. With preemptive multitasking, the thread may still run forever, but
at least from time to time it will be put on hold and other threads will be allowed to
progress.

Another reason to prefer preemptive multitasking is that it allows thread switches
to be performed when they best achieve the goals of responsiveness and resource uti-
lization. For example, the operating system can preempt a thread when input becomes
available for a waiting thread or when a hardware device falls idle.

Even with preemptive multitasking, it may occasionally be useful for a thread to
voluntarily give way to the other threads, rather than to run as long as it is allowed.
Therefore, even preemptive systems normally provide yield(). The name varies
depending on the API, but often has yield in it; for example, the pthreads API uses
the name sched_yield(). One exception to this naming pattern is the Win32 API
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of Microsoft Windows, which uses the name SwitchToThread() for the equivalent
of yield().

Preemptive multitasking does not need any fundamentally different thread switch-
ing mechanism; it simply needs the addition of a hardware interrupt mechanism. In
case you are not familiar with how interrupts work, I will first take a moment to review
this aspect of hardware organization.

Normally a processor will execute consecutive instructions one after another, devi-
ating from sequential flow only when directed by an explicit jump instruction or by
some variant such as the ret instruction used in the Linux code for thread switching.
However, there is always some mechanism by which external hardware (such as a disk
drive or a network interface) can signal that it needs attention. A hardware timer can
also be set to demand attention periodically, such as every millisecond. When an I/O
device or timer needs attention, an interrupt occurs, which is almost as though a proce-
dure call instruction were forcibly inserted between the currently executing instruction
and the next one. Thus, rather than moving on to the program’s next instruction, the
processor jumps off to a special procedure called the interrupt handler. The interrupt
handler, which is part of the operating system, deals with the hardware device and
then executes a return from interrupt instruction, which jumps back to the instruction
that had been about to execute when the interrupt occurred. Of course, in order for
the program’s execution to continue as expected, the interrupt handler needs to be
careful to save all the registers at the start and restore them before returning.

Using this interrupt mechanism, an operating system can provide preemptive mul-
titasking. When an interrupt occurs, the interrupt handler first takes care of the imme-
diate needs, such as accepting data from a network interface controller or updating
the system’s idea of the current time by one millisecond. Then, rather than simply
restoring the registers and executing a return from interrupt instruction, the interrupt
handler checks whether it would be a good time to preempt the current thread and
switch to another. For example, if the interrupt signaled the arrival of data for which
a thread had long been waiting, it might make sense to switch to that thread. Or,
if the interrupt was from the timer and the current thread had been executing for a
long time, it may make sense to give another thread a chance. These policy decisions
are related to scheduling, the topic of Chapter 3. In any case, if the operating system
decides to preempt the current thread, the interrupt handler switches threads using a
mechanism such as the switchFromTo procedure.

2.6 Security and Threads
One premise of this book is that every topic raises its own security issues. Multi-
threading is no exception. However, this section will be quite brief, because with the
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material covered in this chapter, I can present only the security problems connected
with multi-threading, not the solutions. So that I do not divide problems from their
solutions, this section provides only a thumbnail sketch, leaving serious consideration
of the problems and their solutions to the chapters that introduce the necessary tools.

Security issues arise when some threads are unable to execute because others are
hogging the computer’s attention. Security issues also arise because of unwanted inter-
actions between threads. Unwanted interactions include a thread writing into storage
that another thread is trying to use or reading from storage that another thread con-
siders confidential. These problems are most likely to arise if the programmer has a
difficult time understanding how the threads may interact with one another.

The security section in Chapter 3 addresses the problem of some threads monopo-
lizing the computer. The security sections in Chapters 4, 5, and 7 address the problem
of controlling threads’ interaction. Each of these chapters also has a strong emphasis
on design approaches that make interactions easy to understand, thereby minimizing
the risks that arise from incomplete understanding.

Exercises
2.1 Based on the examples in Section 2.2, name at least one difference between

the sleep procedure in the POSIX API and the Thread.sleep method in the
Java API.

2.2 Give at least three more examples, beyond those given in the text, where it would
be useful to run more concurrent threads on a computer than that computer’s
number of processors. Indicate how your examples fit the general reasons to use
concurrency listed in the text.

2.3 Suppose thread A goes through a loop 100 times, each time performing one disk
I/O operation, taking 10 milliseconds, and then some computation, taking 1 mil-
lisecond. While each 10-millisecond disk operation is in progress, thread A can-
not make any use of the processor. Thread B runs for 1 second, purely in the
processor, with no I/O. One millisecond of processor time is spent each time the
processor switches threads; other than this switching cost, there is no problem
with the processor working on thread B during one of thread A’s I/O operations.
(The processor and disk drive do not contend for memory access bandwidth, for
example.)
(a) Suppose the processor and disk work purely on thread A until its completion,

and then the processor switches to thread B and runs all of that thread. What
will the total elapsed time be?

(b) Suppose the processor starts out working on thread A, but every time thread
A performs a disk operation, the processor switches to B during the operation
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and then back to A upon the disk operation’s completion. What will the total
elapsed time be?

2.4 Consider a uniprocessor system where each arrival of input from an external
source triggers the creation and execution of a new thread, which at its comple-
tion produces some output. We are interested in the response time from trigger-
ing input to resulting output.
(a) Input arrives at time 0 and again after 1 second, 2 seconds, and so forth. Each

arrival triggers a thread that takes 600 milliseconds to run. Before the thread
can run, it must be created and dispatched, which takes 10 milliseconds.
What is the average response time for these inputs?

(b) Now a second source of input is added, with input arriving at times 0.1 sec-
onds, 1.1 seconds, 2.1 seconds, and so forth. These inputs trigger threads
that take only 100 milliseconds to run, but they still need 10 milliseconds to
create and dispatch. When an input arrives, the resulting new thread is not
created or dispatched until the processor is idle. What is the average response
time for this second class of inputs? What is the combined average response
time for the two classes?

(c) Suppose we change the way the second class of input is handled. When the
input arrives, the new thread is immediately created and dispatched, even
if that preempts an already running thread. When the new thread com-
pletes, the preempted thread resumes execution after a 1-millisecond thread-
switching delay. What is the average response time for each class of inputs?
What is the combined average for the two together?

2.5 When control switches away from a thread and later switches back to that thread,
the thread resumes execution where it left off. Similarly, when a procedure calls a
subroutine and later the subroutine returns, execution picks back up where it left
off in the calling procedure. Given this similarity, what is the essential difference
between thread switching and subroutine call/return? You saw that each thread
has a separate stack, each in its own area of memory. Why is this not necessary
for subroutine invocations?

Programming Projects
2.1 If you program in C, read the documentation for pthread_kill. Using this

information and the model provided in Figure 2.4 on page 23, write a program
where the initial (main) thread creates a second thread. The main thread should
read input from the keyboard, waiting until the user presses the Enter key. At
that point, it should kill off the second thread and print out a message reporting
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that it has done so. Meanwhile, the second thread should be in an infinite loop,
each time around sleeping five seconds and then printing out a message. Try
running your program. Can the sleeping thread print its periodic messages while
the main thread is waiting for keyboard input? Can the main thread read input,
kill the sleeping thread, and print a message while the sleeping thread is in the
early part of one of its five-second sleeps?

2.2 If you program in Java, read the documentation for the stop method in the
Thread class. (Ignore the information about it being deprecated. That will make
sense only after you read Chapter 4 of this book.) Write the program described in
Programming Project 2.1, except do so in Java. You can use the program shown
in Figure 2.3 on page 23 as a model.

2.3 Read the API documentation for some programming language other than C,
C++, or Java to find out how to spawn off a thread and how to sleep. Write a
program in this language equivalent to the Java and C example programs in Fig-
ures 2.3 and 2.4 on page 23. Then do the equivalent of Programming Projects 2.1
and 2.2 using the language you have chosen.

2.4 If you program in C under Microsoft Windows, you can use the native Win32 API
instead of the portable pthreads API. Read the documentation of CreateThread
and Sleep and modify the program of Figure 2.4 on page 23 to use these
procedures.

Exploration Projects
2.1 Try the experiment of running a disk-intensive process and a processor-intensive

process concurrently. Write a report carefully explaining what you did and in
which hardware and software system context you did it, so that someone else
could replicate your results. Your report should show how the elapsed time for
the concurrent execution compared with the times from sequential execution.
Be sure to do multiple trials and to reboot the system before each run to eliminate
effects that come from keeping disk data in memory for re-use. If you can find
documentation for any performance-monitoring tools on your system, which
would provide information such as the percentage of CPU time used or the num-
ber of disk I/O operations per second, you can include this information in your
report as well.

2.2 Early versions of Microsoft Windows and Mac OS used cooperative multitasking.
Use the web, or other sources of information, to find out when each switched
to preemptive multitasking. Can you find and summarize any examples of what
was written about this change at the time?
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2.3 How frequently does a system switch threads? You can find this out on a Linux
system by using the vmstat program. Read the man page for vmstat, and then
run it to find the number of context switches per second. Write a report in which
you carefully explain what you did and the hardware and software system con-
text in which you did it, so that someone else could replicate your results.

Notes
The idea of executing multiple threads concurrently seems to have occurred to several
people (more or less concurrently) in the late 1950s. They did not use the word thread,
however. For example, a 1959 article by E. F. Codd et al. [30] stated that “the second
form of parallelism, which we shall call nonlocal, provides for concurrent execution of
instructions which need not be neighbors in an instruction stream, but which may
belong, if you please, to entirely separate and unrelated programs.” From the begin-
ning, authors were aware of both reasons for using concurrency that I have emphasized
(resource utilization and responsiveness). The same article by Codd et al., for example,
reports that “one object of concurrently running tasks which belong to different (per-
haps totally unrelated) programs is to achieve a more balanced loading of the facilities
than would be possible if all the tasks belonged to a single program. Another object is
to achieve a specified real-time response in a situation in which messages, transactions,
etc., are to be processed on-line.”

I mentioned that an operating system may dedicate a thread to preemptively zero-
ing out memory. One example of this is the zero page thread in Microsoft Windows. See
Russinovich and Solomon’s book [109] for details.

I extracted the Linux thread switching code from version 2.6.0-test1 of the ker-
nel. Details (such as the offsets 812 and 816) may differ in other versions. The kernel
source code is written in a combination of assembly language and C, contained in
include/asm-i386/system.h as included into kernel/sched.c. To obtain pure
assembly code, I fed the source through the gcc compiler. Also, the ret instruction
is a simplification; the actual kernel at that point jumps to a block of code that ends
with the ret instruction.

My brief descriptions of the POSIX and Java APIs are intended only as concrete
illustrations of broader concepts, not as a replacement for documentation of those
APIs. You can find the official documentation on the web at http://www.opengroup.org
and http://java.sun.com, respectively.


