Operating Systems and Middleware: Supporting Controlled Interaction
by Max Hailperin

The commercially published version of this work (ISBN 0-534-42369-8) was Copyright © 2007 by Thomson Course
Technology, a division of Thomson Learning, Inc., pursuant to an assignment of rights from the author.

This free re-release is Copyright © 2005-2010 by Max Hailperin, pursuant to an assignment of the rights back to him by
Course Technology, a division of Cengage Learning, Inc., successor-in-interest to the publisher. Rights to illustrations
rendered by the publisher were also assigned by Course Technology to Max Hailperin and those illustrations are included in
the license he grants for this free re-release.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 United States License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

The free re-release was prepared from final page proofs and should be completely identical to the commercially published
version. In particular, all the errata listed on the web site still apply. (The author intends to release subsequent versions that
incorporate the corrections as well as updates and improvements. Subsequent versions may also be in a more easily
modifiable form to encourage participation by other contributors. Please email suggestions to max@gustavus.edu.)

Credits from the commercially published version:
Senior Product Manager: Alyssa Pratt
Managing Editor: Mary Franz
Development Editor: Jill Batistick
Senior Marketing Manager: Karen Seitz
Associate Product Manager: Jennifer Smith
Editorial Assistant: Allison Murphy
Senior Manufacturing Coordinator: Justin Palmeiro
Cover Designer: Deborah VanRooyen
Compositor: Interactive Composition Corporation

hailperin-163001

book October 18, 2005 10:18

CHAPTER

Introduction

1.1 Chapter Overview

This book covers a lot of ground. In it, [will explain to you the basic principles that
underlie a broad range of systems and also give you concrete examples of how those
principles play out in several specific systems. You will see not only some of the inter-
nal workings of low-level infrastructure, but also how to build higher-level applica-
tions on top of that infrastructure to make use of its services. Moreover, this book will
draw on material you may have encountered in other branches of computer science
and engineering and engage you in activities ranging from mathematical proofs to the
experimental measurement of real-world performance and the consideration of how
systems are used and abused in social context.

Because the book as a whole covers so much ground, this chapter is designed to
give you a quick view of the whole terrain, so that you know what you are getting
into. This overview is especially important because several of the topics I cover are
interrelated, so that even though I carefully designed the order of presentation, I am
still going to confront you with occasional forward references. You will find, however,
that this introductory chapter gives you a sufficient overview of all the topics so that
you won't be mystified when a chapter on one makes some reference to another.

hailperin-163001 book October 18, 2005 10:18

2 P Chapter 1 Introduction

In Section 1.2, I will explain what an operating system is, and in Section 1.3, I will
do the same for middleware. After these two sections, you will know what general
topic you are studying. Section 1.4 gives you some reasons for studying that topic, by
explaining several roles that I hope this book will serve for you.

After the very broad overview provided by these initial sections, the remaining sec-
tions of this chapter are somewhat more focused. Each corresponds to one or more of
the later chapters and explains one important category of service provided by operat-
ing systems and middleware. Section 1.5 explains how a single computer can run sev-
eral computations concurrently, a topic addressed in more depth by Chapters 2 and 3.
Section 1.6 explains how interactions between those concurrent computations can be
kept under control, the topic of Chapters 4 through 7. Sections 1.7 and 1.8 extend the
range of interacting computations across time and space, respectively, through mech-
anisms such as file systems and networking. They preview Chapter 8 and Chapters 9
and 10. Finally, Section 1.9 introduces the topic of security, a topic I revisit at the end
of each chapter and then focus on in Chapter 11.

1.2 What Is an Operating System?

An operating system is software that uses the hardware resources of a computer system to
provide support for the execution of other software. Specifically, an operating system
provides the following services:

e The operating system allows multiple computations to take place concurrently on
a single computer system. It divides the hardware’s time between the computa-
tions and handles the shifts of focus between the computations, keeping track of
where each one leaves off so that it can later correctly resume.

e The operating system controls the interactions between the concurrent com-
putations. It can enforce rules, such as forbidding computations from mod-
ifying data structures while other computations are accessing those structures.
It can also provide isolated areas of memory for private use by the different
computations.

e The operating system can provide support for controlled interaction of compu-
tations even when they do not run concurrently. In particular, general-purpose
operating systems provide file systems, which allow computations to read data
from files written by earlier computations. This feature is optional because an
embedded system, such as the computer controlling a washing machine, might
in some cases run an operating system, but not provide a file system or other
long-term storage.

hailperin-163001

book October 18, 2005 10:18

1.2 What Is an Operating System? <« 3

e The operating system can provide support for controlled interaction of compu-
tations spread among different computer systems by using networking. This is
another standard feature of general-purpose operating systems.

These services are illustrated in Figure 1.1.

If you have programmed only general-purpose computers, such as PCs, worksta-
tions, and servers, you have probably never encountered a computer system that was
not running an operating system or that did not allow multiple computations to be
ongoing. For example, when you boot up your own computer, chances are that it runs
Linux, Microsoft Windows, or Mac OS X and that you can run multiple application
programs in individual windows on the display screen. These three operating systems
will serve as my primary examples throughout the book.

To illustrate that a computer can run a single program without an operating sys-
tem, consider embedded systems. A typical embedded system might have neither key-
board nor display screen. Instead, it might have temperature and pressure sensors and
an output that controls the fuel injectors of your car. Alternatively, it might have a
primitive keyboard and display, as on a microwave oven, but still be dedicated to run-
ning a single program.

Some of the most sophisticated embedded systems run multiple cooperating pro-
grams and use operating systems. However, more mundane embedded systems take
a simpler form. A single program is directly executed by the embedded processor.
That program contains instructions to read from input sensors, carry out appropri-
ate computations, and write to the output devices. This sort of embedded system
illustrates what is possible without an operating system. It will also serve as a point

1 networking
| Application | : | Application | Application
!
Application | Operating System | | Operating System |
[me] L2

(b)

Figure 1.1 Without an operating system, a computer can directly execute a single program, as
shown in part (a). Part (b) shows that with an operating system, the computer can support concur-
rent computations, control the interactions between them (suggested by the dashed line), and allow
communication across time and space by way of files and networking.

hailperin-163001 book October 18, 2005 10:18

4 P Chapter 1 Introduction

of reference as I contrast my definition of an operating system with an alternative
definition.

One popular alternative definition of an operating system is that it provides appli-
cation programmers with an abstract view of the underlying hardware resources, tak-
ing care of the low-level details so that the applications can be programmed more
simply. For example, the programmer can write a simple statement to output a string
without concern for the details of making each character appear on the display screen.

I would counter by remarking that abstraction can be provided without an oper-
ating system, by linking application programs with separately written libraries of sup-
porting procedures. For example, a program could output a string using the standard
mechanism of a programming language, such as C++ or Java. The application pro-
grammer would not need to know anything about hardware. However, rather than
running on an operating system, the program could be linked with a library that per-
formed the output by appropriately manipulating a microwave oven’s display panel.
Once running on the oven’s embedded processor, the library and the application code
would be a single program, nothing more than a sequence of instructions to directly
execute. However, from the application programmer’s standpoint, the low-level details
would have been successfully hidden.

To summarize this argument, a library of input/output routines is not the same as
an operating system, because it satisfies only the first part of my definition. It does use
underlying hardware to support the execution of other software. However, it does not
provide support for controlled interaction between computations. In fairness to the
alternative viewpoint, it is the more historically grounded one. Originally, a piece of
software could be called an operating system without supporting controlled interac-
tion. However, the language has evolved such that my definition more closely reflects
current usage.

I should also address one other alternative view of operating systems, because it
is likely to be the view you have formed from your own experience using general-
purpose computers. You are likely to think of an operating system as the software with
which you interact in order to carry out tasks such as running application programs.
Depending on the user interface to which you are accustomed, you might think the
operating system is what allows you to click program icons to run them, or you might
think the operating system is what interprets commands you type.

There is an element of truth to this perception. The operating system does provide
the service of executing a selected application program. However, the operating system
provides this service not to human users clicking icons or typing commands, but to
other programs already running on the computer, including the one that handles icon
clicks or command entries. The operating system allows one program that is running

hailperin-163001

book October 18, 2005 10:18

1.2 What Is an Operating System? <« 5

to start another program running. This is just one of the many services the operating
system provides to running programs. Another example is writing output into a file.
The sum total of features the operating system makes available for application pro-
grammers to use in their programs is called the Application Programming Interface (API).
One element of the API is the ability to run other programs.

The reason why you can click a program icon or type in a command to run a
program is that general-purpose operating systems come bundled with a user-interface
program, which uses the operating system API to run other programs in response to
mouse or keyboard input. At a marketing level, this user-interface program may be
treated as a part of the operating system; it may not be given a prominent name of its
own and may not be available for separate purchase.

For example, Microsoft Windows comes with a user interface known as Explorer,
which provides features such as the Start menu and the ability to click icons. (This
program is distinct from the similarly named web browser, Internet Explorer.) How-
ever, even if you are an experienced Windows user, you may never have heard of
Explorer; Microsoft has chosen to give it a very low profile, treating it as an integral
part of the Microsoft Windows environment. At a technical level, however, it is dis-
tinct from the operating system proper. In order to make the distinction explicit, the
true operating system is often called the kernel. The kernel is the fundamental portion
of Microsoft Windows that provides an API supporting computations with controlled
interactions.

A similar distinction between the kernel and the user interface applies to Linux.
The Linux kernel provides the basic operating system services through an API, whereas
shells are the programs (such as bash and tcsh) that interpret typed commands, and
desktop environments are the programs, such as KDE (K Desktop Environment) and
GNOME, that handle graphical interaction.

In this book, I will explain the workings of operating system kernels, the true
operating systems themselves, as opposed to the user-interface programs. One reason
is because user-interface programs are not constructed in any fundamentally differ-
ent way than normal application programs. The other reason is because an operat-
ing system need not have this sort of user interface at all. Consider again the case
of an embedded system that controls automotive fuel injection. If the system is suf-
ficiently sophisticated, it may include an operating system. The main control pro-
gram may run other, more specialized programs. However, there is no ability for the
user to start an arbitrary program running through a shell or desktop environment.
In this book, I will draw my examples from general-purpose systems with which you
might be familiar, but will emphasize the principles that could apply in other contexts
as well.

hailperin-163001 book October 18, 2005 10:18

6 P Chapter 1 Introduction

1.3 What Is Middleware?

Now that you know what an operating system is, I can turn to the other category of
software covered by this book: middleware. Middleware is software occupying a middle
position between application programs and operating systems, as I will explain in this
section.

Operating systems and middleware have much in common. Both are software used
to support other software, such as the application programs you run. Both provide a
similar range of services centered around controlled interaction. Like an operating sys-
tem, middleware may enforce rules designed to keep the computations from interfer-
ing with one another. An example is the rule that only one computation may modify
a shared data structure at a time. Like an operating system, middleware may bring
computations at different times into contact through persistent storage and may sup-
port interaction between computations on different computers by providing network
communication services.

Operating systems and middleware are not the same, however. They rely upon dif-
ferent underlying providers of lower-level services. An operating system provides the
services in its API by making use of the features supported by the hardware. For exam-
ple, it might provide API services of reading and writing named, variable-length files
by making use of a disk drive’s ability to read and write numbered, fixed-length blocks
of data. Middleware, on the other hand, provides the services in its API by making use
of the features supported by an underlying operating system. For example, the mid-
dleware might provide API services for updating relational database tables by making
use of an operating system’s ability to read and write files that contain the database.

This layering of middleware on top of an operating system, as illustrated in Fig-
ure 1.2, explains the name; middleware is in the middle of the vertical stack, between

1
| Application | : | Application | | Application |
5 1
| Middleware | =T=1= | Middleware |
Database
| Operating System | Table | Operating System |

Figure 1.2 Middleware uses services from an operating system and in turn provides services to
application programs to support controlled interaction.

hailperin-163001

book October 18, 2005 10:18

1.4 Objectives for the Book « 7

the application programs and the operating system. Viewed horizontally rather than
vertically, middleware is also in the middle of interactions between different appli-
cation programs (possibly even running on different computer systems), because it
provides mechanisms to support controlled interaction through coordination, persis-
tent storage, naming, and communication.

I already mentioned relational database systems as one example of middleware.
Such systems provide a more sophisticated form of persistent storage than the files
supported by most operating systems. I use Oracle as my primary source of examples
regarding relational database systems. Other middleware I will use for examples in
the book includes the Java 2 Platform, Enterprise Edition (J2EE) and IBM’s WebSphere
MQ. These systems provide support for keeping computations largely isolated from
undesirable interactions, while allowing them to communicate with one another even
if running on different computers.

The marketing definition of middleware doesn’t always correspond exactly with
my technical definition. In particular, some middleware is of such fundamental impor-
tance that it is distributed as part of the operating system bundle, rather than as a
separate middleware product. As an example, general-purpose operating systems all
come equipped with some mechanism for translating Internet hostnames, such as
www.gustavus.edu, into numerical addresses. These mechanisms are typically outside
the operating system kernel, but provide a general supporting service to application
programs. Therefore, by my definition, they are middleware, even if not normally
labeled as such.

1.4 Objectives for the Book

If you work your way through this book, you will gain both knowledge and skills.
Notice that I did not say anything about reading the book, but rather about working
your way through the book. Each chapter in this book concludes with exercises, pro-
gramming projects, exploration projects, and some bibliographic or historical notes.
To achieve the objectives of the book, you need to work exercises, carry out projects,
and occasionally venture down one of the side trails pointed out by the end-of-chapter
notes. Some of the exploration projects will specifically direct you to do research in
outside sources, such as on the Internet or in a library. Others will call upon you to
do experimental work, such as measuring the performance consequences of a partic-
ular design choice. If you are going to invest that kind of time and effort, you deserve
some idea of what you stand to gain from it. Therefore, I will explain in the following
paragraphs how you will be more knowledgeable and skilled after finishing the book.

hailperin-163001 book October 18, 2005 10:18

8 P Chapter1 Introduction

First, you will gain a general knowledge of how contemporary operating systems
and middleware work and some idea why they work that way. That knowledge may
be interesting in its own right, but it also has practical applications. Recall that these
systems provide supporting APIs for application programmers to use. Therefore, one
payoff will be that if you program applications, you will be positioned to make more
effective use of the supporting APIs. This is true even though you won’t be an expert
at any particular API; instead, you'll see the big picture of what services those APIs
provide.

Another payoff will be if you are in a role where you need to alter the configuration
of an operating system or middleware product in order to tune its performance or to
make it best serve a particular context. Again, this one book alone won'’t give you all
the specific knowledge you need about any particular system, but it will give you the
general background to make sense out of more specialized references.

Perhaps the most significant payoff for learning the details of today’s systems in
the context of the reasons behind their designs is that you will be in a better position
to learn tomorrow’s systems. You will be able to see in what ways they are different
and in what ways they are fundamentally still the same. You will be able to put new
features into context, often as a new solution to an old problem, or even just as a
variant on an existing solution. If you really get excited by what you learn from this
book, you could even use your knowledge as the foundation for more advanced study
and become one of the people who develops tomorrow’s systems.

Second, in addition to knowledge about systems, you will learn some skills that
are applicable even outside the context of operating systems and middleware. Some
of the most important skills come from the exploration projects. For example, if you
take those projects seriously, you'll practice not only conducting experiments, but also
writing reports describing the experiments and their results. That will serve you well
in many contexts.

I have also provided you with some opportunities to develop proficiency in using
the professional literature, such as documentation and the papers published in con-
ference proceedings. Those sources go into more depth than this book can, and they
will always be more up-to-date.

From the programming projects, you’ll gain some skill at writing programs that
have several interacting components operating concurrently with one another and
that keep their interactions under control. You'll also develop some skill at writing
programs that interact over the Internet. In neither case will you become a master
programmer. However, in both cases, you will be laying a foundation of skills that are
relevant to a range of development projects and environments.

Another example of a skill you can acquire is the ability to look at the security
ramifications of design decisions. I have a security section in each chapter, rather than

hailperin-163001

book October 18, 2005 10:18

1.5 Multiple Computations on One Computer <« 9

a security chapter only at the end of the book, because I want you to develop the habit
of asking, “What are the security issues here?” That question is relevant even outside
the realm of operating systems and middleware.

As I hope you can see, studying operating systems and middleware can provide a
wide range of benefits, particularly if you engage yourself in it as an active participant,
rather than as a spectator. With that for motivation, I will now take you on another
tour of the services that operating systems and middleware provide. This tour is more
detailed than Sections 1.2 and 1.3, but not as detailed as Chapters 2 through 11.

1.5 Multiple Computations on One Computer

The single most fundamental service an operating system provides is to allow multi-
ple computations to be going on at the same time, rather than forcing each to wait
until the previous one has run to completion. This allows desktop computers to jug-
gle multiple tasks for the busy humans seated in front of their screens, and it allows
server computers to be responsive to requests originating from many different client
computers on the Internet. Beyond these responsiveness concerns, concurrent com-
putations can also make more efficient use of a computer’s resources. For example,
while one computation is stalled waiting for input to arrive, another computation can
be making productive use of the processor.

A variety of words can be used to refer to the computations underway on a com-
puter; they may be called threads, processes, tasks, or jobs. In this book, I will use both
the word “thread” and the word “process,” and it is important that I explain now the
difference between them.

A thread is the fundamental unit of concurrency. Any one sequence of programmed
actions is a thread. Executing a program might create multiple threads, if the program
calls for several independent sequences of actions run concurrently with one another.
Even if each execution of a program creates only a single thread, which is the more
normal case, a typical system will be running several threads: one for each ongoing
program execution, as well as some that are internal parts of the operating system
itself.

When you start a program running, you are always creating one or more threads.
However, you are also creating a process. The process is a container that holds the thread
or threads that you started running and protects them from unwanted interactions
with other unrelated threads running on the same computer. For example, a thread
running in one process cannot accidentally overwrite memory in use by a different
process.

hailperin-163001 book October 18, 2005 10:18

10 P» Chapter1 Introduction

Because human users normally start a new process running every time they want
to make a new computation happen, it is tempting to think of processes as the unit
of concurrent execution. This temptation is amplified by the fact that older operating
systems required each process to have exactly one thread, so that the two kinds of
objects were in one-to-one correspondence, and it was not important to distinguish
them. However, in this book, I will consistently make the distinction. When I am refer-
ring to the ability to set an independent sequence of programmed actions in motion,
I will write about creating threads. Only when I am referring to the ability to protect
threads will I write about creating processes.

In order to support threads, operating system APIs include features such as the
ability to create a new thread and to kill off an existing thread. Inside the operat-
ing system, there must be some mechanism for switching the computer’s attention
between the various threads. When the operating system suspends execution of one
thread in order to give another thread a chance to make progress, the operating system
must store enough information about the first thread to be able to successfully resume
its execution later. Chapter 2 addresses these issues.

Some threads may not be runnable at any particular time, because they are wait-
ing for some event, such as the arrival of input. However, in general, an operating
system will be confronted with multiple runnable threads and will have to choose
which one to run at each moment. This problem of scheduling threads’ execution has
many solutions, which are surveyed in Chapter 3. The scheduling problem is interest-
ing, and has generated so many solutions, because it involves the balancing of system
users’ competing interests and values. No individual scheduling approach will make
everyone happy all the time. My focus is on explaining how the different schedul-
ing approaches fit different contexts of system usage and achieve differing goals. In
addition I explain how APIs allow programmers to exert control over scheduling, for
example, by indicating that some threads should have higher priority than others.

1.6 Controlling Interactions Between
Computations

Running multiple threads at once becomes more interesting if the threads need to
interact, rather than execute completely independently of one another. For example,
one thread might be producing data that another thread consumes. If one thread is
writing data into memory and another is reading the data out, you don’t want the
reader to get ahead of the writer and start reading from locations that have yet to be
written. This illustrates one broad family of control for interaction: control over the
relative timing of the threads’ execution. Here, a reading step must take place after

hailperin-163001

book October 18, 2005 10:18

1.6 Controlling Interactions Between Computations <« 11

the corresponding writing step. The general name for control over threads’ timing is
synchronization.

Chapter 4 explains several common synchronization patterns, including keeping
a consumer from outstripping the corresponding producer. It also explains the mech-
anisms that are commonly used to provide synchronization, some of which are sup-
ported directly by operating systems, while others require some modest amount of
middleware, such as the Java runtime environment.

That same chapter also explains a particularly important difficulty that can arise
from the use of synchronization. Synchronization can force one thread to wait for
another. What if the second thread happens to be waiting for the first? This sort of
cyclic waiting is known as a deadlock. My discussion of ways to cope with deadlock also
introduces some significant middleware, because database systems provide an inter-
esting example of deadlock handling.

In Chapter 5, I expand on the themes of synchronization and middleware by
explaining transactions, which are commonly supported by middleware. A transaction
is a unit of computational work for which no intermediate state from the middle
of the computation is ever visible. Concurrent transactions are isolated from seeing
each other’s intermediate storage. Additionally, if a transaction should fail, the stor-
age will be left as it was before the transaction started. Even if the computer system
should catastrophically crash in the middle of a transaction’s execution, the storage
after rebooting will not reflect the partial transaction. This prevents results of a half-
completed transaction from becoming visible. Transactions are incredibly useful in
designing reliable information systems and have widespread commercial deployment.
They also provide a good example of how mathematical reasoning can be used to help
design practical systems; this will be the chapter where I most prominently expect you
to understand a proof.

Even threads that have no reason to interact may accidentally interact, if they
are running on the same computer and sharing the same memory. For example, one
thread might accidentally write into memory being used by the other. This is one of
several reasons why operating systems provide virtual memory, the topic of Chapter 6.
Virtual memory refers to the technique of modifying addresses on their way from
the processor to the memory, so that the addresses actually used for storing values
in memory may be different from those appearing in the processor’s load and store
instructions. This is a general mechanism provided through a combination of hard-
ware and operating system software. I explain several different goals this mechanism
can serve, but the most simple is isolating threads in one process from those in another
by directing their memory accesses to different regions of memory.

Having broached the topic of providing processes with isolated virtual memory,
I devote Chapter 7 to processes. This chapter explains an API for creating processes.
However, I also focus on protection mechanisms, not only by building on Chapter 6’s

hailperin-163001 book October 18, 2005 10:18

12 p» Chapter1 Introduction

introduction of virtual memory, but also by explaining other forms of protection that
are used to protect processes from one another and to protect the operating system
itself from the processes. Some of these protection mechanisms can be used to pro-
tect not just the storage of values in memory, but also longer-term data storage, such
as files, and even network communication channels. Therefore, Chapter 7 lays some
groundwork for the later treatment of these topics.

Chapter 7 also provides me an opportunity to clarify one point about threads left
open by Chapter 2. By showing how operating systems provide a protective bound-
ary between themselves and the running application processes, I can explain where
threads fall relative to this boundary. In particular, there are threads that are contained
entirely within the operating system kernel, others that are contained entirely within
an application process, and yet others that cross the boundary, providing support from
within the kernel for concurrent activities within the application process. Although it
might seem natural to discuss these categories of threads in Chapter 2, the chapter on
threads, I really need to wait for Chapter 7 in order to make any more sense out of the
distinctions than I've managed in this introductory paragraph.

When two computations run concurrently on a single computer, the hard part of
supporting controlled interaction is to keep the interaction under control. For exam-
ple, in my earlier example of a pair of threads, one produces some data and the other
consumes it. In such a situation, there is no great mystery to how the data can flow
from one to the other, because both are using the same computer’s memory. The hard
part is regulating the use of that shared memory. This stands in contrast to the interac-
tions across time and space, which [will address in Sections 1.7 and 1.8. If the producer
and consumer run at different times, or on different computers, the operating system
and middleware will need to take pains to convey the data from one to the other.

1.7 Supporting Interaction Across Time

General-purpose operating systems all support some mechanism for computations to
leave results in long-term storage, from which they can be retrieved by later compu-
tations. Because this storage persists even when the system is shut down and started
back up, it is known as persistent storage. Normally, operating systems provide persis-
tent storage in the form of named files, which are organized into a hierarchy of direc-
tories or folders. Other forms of persistent storage, such as relational database tables
and application-defined persistent objects, are generally supported by middleware. In
Chapter 8, I focus on file systems, though I also explain some of the connections with
middleware. For example, | compare the storage of file directories with that of data-
base indexes. This comparison is particularly important as these areas are converging.

hailperin-163001

book October 18, 2005 10:18

1.7 Supporting Interaction Across Time <« 13

Already the underlying mechanisms are very similar, and file systems are starting to
support indexing services like those provided by database systems.

There are two general categories of file APIs, both of which I cover in Chapter 8. The
files can be made a part of the process’s virtual memory space, accessible with normal
load and store instructions, or they can be treated separately, as external entities to
read and write with explicit operations.

Either kind of file API provides a relatively simple interface to some quite signifi-
cant mechanisms hidden within the operating system. Chapter 8 also provides a sur-
vey of some of these mechanisms.

As an example of a simple interface to a sophisticated mechanism, an application
programmer can make a file larger simply by writing additional data to the end of
the file. The operating system, on the other hand, has to choose the location on disk
where the new data will be stored. This disk space allocation has a strong influence on
performance, because of the physical realities of how disk drives operate.

Another job for the file system is to keep track of where the data for each file is
located. It also keeps track of other file-specific information, such as access permissions.
Thus, the file system not only stores the files’ data, but also stores metadata, which is
data describing the data.

All these mechanisms are similar to those used by middleware for purposes such as
allocating space to hold database tables. Operating systems and middleware also store
information, such as file directories and database indexes, used to locate data. The
data structures used for these naming and indexing purposes are designed for efficient
access, just like those used to track the allocation of disk space to stored objects.

To make the job of operating systems and middleware even more challenging,
persistent storage structures are expected to survive system crashes without signifi-
cant loss of integrity. For example, it is not acceptable after a crash for specific disk
space to be listed as available for allocation and also to be listed as allocated to a file.
Such a confused state must not occur even if the crash happened just as the file was
being created or deleted. Thus, Chapter 8 builds on Chapter 5’s explanation of atomic
transactions, while also outlining some other mechanisms that can be used to protect
the integrity of metadata, directories, and indexes.

Persistent storage is crucially important, perhaps even more so in the Internet age
than in prior times, because servers now hold huge amounts of data for use by clients
all over the world. Nonetheless, persistent storage no longer plays as unique a role as
it once did. Once upon a time, there were many computer systems in which the only
way processes communicated was through persistent storage. Today, that is almost
unthinkable, because communication often spans the Internet. Therefore, as I explain
in Section 1.8, operating systems provide support for networking, and middleware
provides further support for the construction of distributed systems.

hailperin-163001 book October 18, 2005 10:18

14 P Chapter1 Introduction

1.8 Supporting Interaction Across Space

In order to build coherent software systems with components operating on differing
computers, programmers need to solve lots of problems. Consider two examples: data
flowing in a stream must be delivered in order, even if sent by varying routes through
interconnected networks, and message delivery must be incorporated into the all-or-
nothing guarantees provided by transactions. Luckily, application programmers don’t
need to solve most of these problems, because appropriate supporting services are pro-
vided by operating systems and middleware.

I divide my coverage of these services into two chapters. Chapter 9 provides a
foundation regarding networking, so that this book will stand on its own if you have
not previously studied networking. That chapter also covers services commonly pro-
vided by operating systems, or in close conjunction with operating systems, such as
distributed file systems. Chapter 10, in contrast, explains the higher-level services that
middleware provides for application-to-application communication, in such forms as
messaging and web services. Each chapter introduces example APIs that you can use
as an application programmer, as well as the more general principles behind those
specific APIs.

Networking systems, as I explain in Chapter 9, are generally partitioned into lay-
ers, where each layer makes use of the services provided by the layer under it in order
to provide additional services to the layer above it. At the bottom of the stack is
the physical layer, concerned with such matters as copper, fiber optics, radio waves,
voltages, and wavelengths. Above that is the link layer, which provides the service of
transmitting a chunk of data to another computer on the same local network. This is
the point where the operating system becomes involved. Building on the link-layer
foundation, the operating system provides the services of the network layer and the
transport layer. The network layer arranges for data to be relayed through intercon-
nected networks so as to arrive at a computer that may be elsewhere in the world.
The transport layer builds on top of this basic computer-to-computer data transmis-
sion to provide more useful application-to-application communication channels. For
example, the transport layer typically uses sequence numbering and retransmission to
provide applications the service of in-order, loss-free delivery of streams of data. This
is the level of the most common operating system API, which provides sockets, that is,
endpoints for these transport-layer connections.

The next layer up is the application layer. A few specialized application-layer ser-
vices, such as distributed file systems, are integrated with operating systems. However,
most application-layer software, such as web browsers and email programs, is written
by application programmers. These applications can be built directly on an operat-
ing system’s socket API and exchange streams of bytes that comply with standardized

hailperin-163001

book October 18, 2005 10:18

1.9 Security <« 15

protocols. In Chapter 9, I illustrate this possibility by showing how web browsers and
web servers communicate.

Alternatively, programmers of distributed applications can make use of middle-
ware to work at a higher level than sending bytes over sockets. I show two basic
approaches to this in Chapter 10: messaging and Remote Procedure Calls (RPCs). Web
services are a particular approach to standardizing these kinds of higher-level appli-
cation communication, and have been primarily used with RPCs: I show how to use
them in this way.

In a messaging system, an application program requests the delivery of a message.
The messaging system not only delivers the message, which lower-level networking
could accomplish, but also provides additional services. For example, the messaging
is often integrated with transaction processing. A successtul transaction may retrieve
a message from an incoming message queue, update a database in response to that
message, and send a response message to an outgoing queue. If the transaction fails,
none of these three changes will happen; the request message will remain in the
incoming queue, the database will remain unchanged, and the response message will
not be queued for further delivery. Another common service provided by messaging
systems is to deliver a message to any number of recipients who have subscribed to
receive messages of a particular kind; the sender need not be aware of who the actual
receivers are.

Middleware can also provide a mechanism for Remote Procedure Call (RPC), in
which communication between a client and a server is made to look like an ordinary
programming language procedure call, such as invoking a method on an object. The
only difference is that the object in question is located on a different computer, and
so the call and return involve network communication. The middleware hides this
complexity, so that the application programmer can work largely as though all the
objects were local. In Chapter 10, I explain this concept more fully, and then go on to
show how it plays out in the form of web services. A web service is an application-layer
entity that programs can communicate with using standardized protocols similar to
those that humans use to browse the web.

1.9 Security

Operating systems and middleware are often the targets of attacks by adversaries trying
to defeat system security. Even attacks aimed at application programs often relate to
operating systems and middleware. In particular, easily misused features of operating
systems and middleware can be the root cause of an application-level vulnerability. On

hailperin-163001 book October 18, 2005 10:18

16 P Chapter1 Introduction

the other hand, operating systems and middleware provide many features that can be
very helpful in constructing secure systems.

A system is secure if it provides an acceptably low risk that an adversary will pre-
vent the system from achieving its owner’s objectives. In Chapter 11, [explain in more
detail how to think about risk and about the conflicting objectives of system owners
and adversaries. In particular, I explain that some of the most common objectives for
owners fall into four categories: confidentiality, integrity, availability, and accountabil-
ity. A system provides confidentiality if it prevents inappropriate disclosure of informa-
tion, integrity if it prevents inappropriate modification or destruction of information,
and availability if it prevents inappropriate interference with legitimate usage. A sys-
tem provides accountability if it provides ways to check how authorized users have
exercised their authority. All of these rely on authentication, the ability of a system to
verify the identity of a user.

Many people have a narrow view of system security. They think of those features
that would not even exist, were it not for security issues. Clearly, logging in with a pass-
word (or some other, better form of authentication) is a component of system security.
Equally clearly, having permission to read some files, but not others, is a component
of system security, as are cryptographic protocols used to protect network communi-
cation from interception. However, this view of security is dangerously incomplete.

You need to keep in mind that the design of any component of the operating sys-
tem can have security consequences. Even those parts whose design is dominated by
other considerations must also reflect some proactive consideration of security conse-
quences, or the overall system will be insecure. In fact, this is an important principle
that extends beyond the operating system to include application software and the
humans who operate it.

Therefore, I will make a habit of addressing security issues in every chapter, rather
than only at the end of the book. Specifically, each chapter concludes with a section
pointing out some of the key security issues associated with that chapter’s topic. I also
provide a more coherent treatment of security by concluding the book as a whole with
Chapter 11, which is devoted exclusively to security. That chapter takes a holistic ap-
proach to security, in which human factors play as important a role as technical ones.

Exercises
1.1 What is the difference between an operating system and middleware?
1.2 What do operating systems and middleware have in common?

1.3 What is the relationship between threads and processes?

hailperin-163001

book

1.4

1.5

1.6

1.7

October 18, 2005 10:18

Exploration Projects < 17

What is one way an operating system might isolate threads from unwanted
interactions, and what is one way that middleware might do so?

What is one way an operating system might provide persistent storage, and what
is one way middleware might do so?

What is one way an operating system might support network communication,
and what is one way middleware might do so?

Of all the topics previewed in this chapter, which one are you most looking for-
ward to learning more about? Why?

2 Programming Project

1.1

1.1

1.2

Write, test, and debug a program in the language of your choice to carry out any
task you choose. Then write a list of all the services you suspect the operating
system is providing in order to support the execution of your sample program.
If you think the program is also relying on any middleware services, list those
as well.

/C) Exploration Projects

Look through the titles of the papers presented at several recent conferences
hosted by the USENIX Association (The Advanced Computing Systems Associa-
tion); you can find the conference proceedings at www.usenix.org. To get a better
idea of what an individual paper is about, click the title to show the abstract,
which is a short summary of the paper. Based on titles and abstracts, pick out a
few papers that you think would make interesting supplementary reading as you
work your way through this book. Write down a list showing the bibliographic
information for the papers you selected and, as near as you can estimate, where
in this book’s table of contents they would be appropriate to read.

Conduct a simple experiment in which you take some action on a computer
system and observe what the response is. You can choose any action you wish
and any computer system for which you have appropriate access. You can either
observe a quantitative result, such as how long the response takes or how much
output is produced, or a qualitative result, such as in what form the response
arrives. Now, try replicating the experiment. Do you always get the same result?
Similar ones? Are there any factors that need to be controlled in order to get
results that are at least approximately repeatable? For example, to get consistent
times, do you need to reboot the system between each trial and prevent other
people from using the system? To get consistent output, do you need to make sure
input files are kept unchanged? If your action involves a physical device, such as

hailperin-163001 book October 18, 2005 10:18

18 P Chapter1 Introduction

a printer, do you have to control variables such as whether the printer is stocked
with paper? Finally, write up a careful report, in which you explain both what
experiment you tried and what results you observed. You should explain how
repeatable the results proved to be and what limits there were on the repeata-
bility. You should describe the hardware and software configuration in enough
detail that someone else could replicate your experiment and would be likely to
get similar results.

Notes

The idea that an operating system should isolate computations from unwanted inter-
actions, and yet support desirable interactions, has a long heritage. A 1962 paper [34]
by Corbat6, Daggett, and Daley points out that “different user programs if simulta-
neously in core memory may interfere with each other or the supervisor program so
some form of memory protection mode should be available when operating user pro-
grams.” However, that same paper goes on to say that although “great care went into
making each user independent of the other users...it would be a useful extension of
the system if this were not always the case,” so that the computer system could support
group work, such as war games.

Middleware is not as well-known to the general public as operating systems are,
though commercial information-system developers would be lost without it. One
attempt to introduce middleware to a somewhat broader audience was Bernstein'’s
1996 survey article [16].

The USENIX Association, mentioned in Exploration Project 1.1, is only one of sev-
eral very fine professional societies holding conferences related to the subject matter of
this book. The reason why I specifically recommended looking through their proceed-
ings is that they tend to be particularly accessible to students. In part this is because
USENIX focuses on bringing practitioners and academics together; thus, the papers
generally are pragmatic without being superficial. For recent papers, the full text is
not available on their web site. However, any college or university can get free access
to the papers, as well as other significant benefits for students.

