
Introducing Fixed-Point Iteration Early in a Compiler Course

Max Hailperin
Gustavus Adolphus College
St. Peter, MN 56082 USA

max@gac.edu http://www.gac.edu/∼max

Abstract

When teaching a course in compiler design, it is conven-
tional to introduce the iterative calculation of least fixed
points quite late in the course, in the guise of iterative data-
flow analysis. In this paper I point out that the same math-
ematical and algorithmic ideas can be introduced much ear-
lier, in the parsing portion of the course, as an explanation
of the standard algorithm for computing the FIRST sets of
a context-free grammar. Doing so not only renders these
techniques more familiar when they re-appear in data-flow
analysis, it also provides a more sound foundation for the
FIRST algorithm than is typically offered. Moreover, these
techniques deserve increased curricular prominence because
they naturally lead to proofs of correctness for general non-
deterministic algorithms that subsume multiple deterministic
algorithms.

Introduction

By the time computer science students take a course in com-
piler design, they should be familiar with the notion of prov-
ing that the particular computational “path” taken by a de-
terministic algorithm has the correct result as its inevitable
destination. However, they may well never before have seen
a proof of correctness for an algorithm embodying “don’t
care” non-determinism. Such a proof shows that no mat-
ter which of an assortment of alternative paths the algo-
rithm chooses to take, it winds up at the correct answer
regardless—all roads lead to Rome. Yet despite the unfamil-
iarity of such proofs, they arise quite naturally in the iterative
calculation of least (or greatest) fixed-points of functions on
partially ordered sets, and hence arise naturally in the data-

0Copyright c© 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM In., fax +1 (212) 869-0481, or
permissions@acm.org.

flow analysis portion of a compiler design course. More-
over this non-determinism is of great practical importance,
because it allows one proof of correctness for a general non-
deterministic algorithm to serve for many different determin-
istic algorithms that concretely instantiate it. As such, there
is a desirable decoupling between correctness and efficiency:
the correctness can be proven first, and then a deterministic
instantiation chosen based on its efficiency.

The problem is that this approach is too fundamental to be
addressed for the first time in the context of iterative data-
flow analysis, late in the typical compiler design course. It
would be preferable if the concepts could be introduced ear-
lier in some other context, and then re-used for data-flow
analysis. Much to my surprise, there is a natural opportunity
early in the compiler design course, in the material on pars-
ing. The standard compiler design texts, e.g. [1, 2], show a
technique for computing the so-called FIRST sets of a gram-
mar that amounts to an iterative computation of a least fixed-
point. Yet none of the texts I am familiar with takes the op-
portunity to show how the correctness of such an algorithm
can be verified. Therefore, this paper will remedy this omis-
sion by showing how the computation of FIRST sets can be
used as an early introduction to non-deterministic least fixed-
point iterations.

In the remaining sections, I will state the problem of com-
puting FIRST sets for a context free grammar, re-express it
as the quest for a least fixed point, then make the notion
of a non-deterministic least fixed-point iteration precise and
show how the FIRST problem can be solved through such an
iteration, and finally sketch how this specific iteration can be
proved correct. Although the focus is on this one problem,
I’ll point out the features that are relied upon for the proof,
and hence govern the scope of its generalizability. This mir-
rors how I have taught this material and is an approach I
advocate.

The FIRST Problem

Recall that a context-free grammar (CFG) possesses two dis-
joint finite sets of grammar symbols, known as terminal sym-
bols and non-terminals; we will refer to these sets as T and
N below. The CFG also possesses a finite set, P , of produc-

tions, each of which has a non-terminal as its left-hand side
and a (possibly empty) finite string of grammar symbols as
its right-hand side. A (possibly empty) finite string of gram-
mar symbols is said to be derivable from an initial grammar
symbol if one can start with the initial symbol and by suc-
cessive replacements of the left-hand side of a production by
the right-hand side arrive at the string.

We can now define the FIRST problem in this context. We
will consider FIRST to be a function from N ∪T to T ∪{ε},
where ε is a special symbol not in N ∪ T . (We will ignore
the conventional, but easy, extension of FIRST’s domain to
longer strings of grammar symbols.) The fundamental defi-
nition of FIRST is

FIRST(x) = {y ∈ T | a string starting with y is
derivable from x}

∪ (if the empty string is derivable
from x, {ε}, else {})

This function plays an important role in both LL and LR
parser construction. Thus, any standard compiler construc-
tion text, such as [1] or [2], will contain some algorithm for
computing the FIRST function of a CFG, or, as it is com-
monly termed, computing the FIRST sets.

However, it is not immediately obvious from the above
fundamental definition of FIRST what form such an algo-
rithm could take, because it is a completely non-effective
definition: it suggests computing FIRST(x) by looking
through the set of all strings derivable from x and seeing
what terminals they start with. Yet in general infinitely many
strings may be derivable from a non-terminal, rendering this
approach impossible. This is why we redefine FIRST in the
next section as the least fixed-point of a set of equations,
which leads to an effective algorithm for its computation.

FIRST as a Least Fixed-Point

If there is a production with left-hand side A and all the sym-
bols on the right hand side have ε in their FIRST sets, then ε
must be in FIRST(A) as well, since A can derive the empty
string by way of this production. Similarly, if the produc-
tion is of the form A → X1X2 · · ·Xn and there is some k
with 1 ≤ k ≤ n such that y ∈ FIRST(Xk) and for all i in
the range 1 ≤ i < k, ε ∈ FIRST(Xi), then y must also be
in FIRST(A), since A can derive a string starting with y by
way of this production.

These two observations both constrain FIRST(A) where A
is a non-terminal. There is a similar pair of constraints for
each production with left-hand side A. We can put together
all these pairs of constraints in one equation for FIRST(A),
namely FIRST(A) = E(A) ∪ L(A), where

E(A) =


{ε} if there exists A → X1X2 · · ·Xn ∈ P

such that
∧

1≤k≤n

ε ∈ FIRST(Xk)

{} otherwise

and

L(A) = {y ∈ T | (A → X1X2 · · ·Xn) ∈ P
∧

∨
1≤k≤n

(y ∈ FIRST(Xk)

∧
∧

1≤i<k

ε ∈ FIRST(Xi))}

For a terminal symbol a, we have an even simpler con-
straint, namely that FIRST(a) = {a}. Taking all of these to-
gether, we wind up with a system of |N |+ |T | simultaneous
equations governing the function FIRST.

In my experience, students are not intrinsically suspicious
of the idea that such a system of equations can be a “defini-
tion” of FIRST. However, it generally does not require many
leading questions regarding their past experiences with sys-
tems of equations for them to realize that in general such
a system might have no solution or multiple solutions. It
is then easy to show an example CFG where the system of
equations does in fact have multiple solutions. For example,
if the CFG consists of the productions A → Aa and A → b,
then does FIRST(A) equal {a, b} or just {b}? Both are so-
lutions to the system of equations. (We are using the con-
vention that lower-case letters are terminals and upper-case
letters are non-terminals.)

This illustration, that there can be more than one solution,
leads to the notion of defining FIRST as being the least fixed-
point (i.e., solution), where “least” is in the sense of point-
wise set inclusion, i.e., F is “less than or equal to” G if for
all x ∈ N ∪ T , F (x) ⊆ G(x). In other words, we de-
fine FIRST as being a fixed point such that each of the indi-
vidual FIRST sets is a subset of the corresponding one from
any other fixed-point, since intuitively that makes FIRST be
“junk-free.” (This intuition can be verified, though I haven’t
done so when teaching this.) We still need to show that the
system of equations will always have a fixed point, that there
exists among the fixed points a least one, and that we have
an effective algorithm for finding it. (Note that uniqueness
is not at issue: if there is a least fixed point, then it must
be unique, because two distinct sets can’t both be subsets of
each other.) We will tackle these goals together: our proof
that the algorithm finds the least fixed point will also serve
as proof that one exists.

The Iterative Algorithm

In general, a non-deterministic least fixed-point iteration
starts with the least element of a partially ordered set (poset),
which we’ll require to have such an element, and repeatedly
chooses and applies any function from a finite set of func-
tions, subject only to the constraint that the function “makes
a difference” i.e, that xi+1 = fi(xi) 6= xi. This continues
until none of the functions makes a difference, at which point
the algorithm terminates with the final xn as its value. Sub-
ject to appropriate conditions on the poset and the functions,
we can show that the algorithm terminates and that xn is the

least common fixed point of the functions. (The nomencla-
ture and exact definitions vary; some authors call these iter-
ations “chaotic” rather than “non-deterministic” and loosen
the restriction that only functions that make a difference may
be chosen to allow a finite number of useless function appli-
cations. See for example [3].)

Specifically in the case of the FIRST problem, we will find
our least fixed point by starting at F0 defined by F0(x) = {},
for all x ∈ N ∪ T . The set of functions available for choos-
ing each fi from will have |N |+ |T | members, one for each
grammar symbol. We will name them after the grammar
symbols, e.g. fA for the non-terminal A and fa for the termi-
nal a. We’ll use A as a representative non-terminal and a as
a representative terminal: everything should be interpreted
as applying to all the other symbols as well.

The functions for the terminals are particular simple; we
have

fa(F)(x) =
{
{a} if x = a
F (x) otherwise

In other words, fa(F) is identical to F except possibly for at
a, which it maps to {a} regardless of whether F did so.

The functions for the terminals are more complex, though
again we have the property that fA(F) is identical to F ex-
cept possibly at A. This time, however, fA(F)(A) is not
independent of F , unlike fa(F)(a):

fA(F)(x) =
{

EA(F) ∪ LA(F) if x = A
F (x) otherwise

where

EA(F) =


{ε} if there exists A → X1X2 · · ·Xn ∈ P

such that
∧

1≤k≤n

ε ∈ F (Xk)

{} otherwise

and

LA(F) = {y ∈ T | (A → X1X2 · · ·Xn) ∈ P
∧

∨
1≤k≤n

(y ∈ F (Xk)

∧
∧

1≤i<k

ε ∈ F (Xi))}

Notice that finding a fixed point of these functions is the
same as solving the earlier equations for FIRST. This is be-
cause these functions come directly from the equations, but
rather than expressing FIRST in terms of itself, they express
one approximant to FIRST, fA(F), in terms of the previous
approximant, F .

Verifying the Algorithm

Clearly if the algorithm terminates it does so at a fixed point,
since that is the stopping condition for the iteration. So the
remaining questions are whether the fixed point found on
termination is the least one, and whether we can guarantee
termination.

We’ll use v for our partial order; recall that for the FIRST
problem we are defining F v G to mean that F (x) ⊆ G(x)
for all x ∈ N ∪ T .

Suppose G is some arbitrary fixed point of the functions
f , i.e., for all x ∈ N ∪ T , fx(G) = G. Since F0 is the least
element of the poset, F0 v G. Next we rely on a property
of the functions, namely that they are all monotonic. This
means that if F v G, then f(F) v f(G). It isn’t hard to
verify that the fa and fA given above are monotonic. Since
all the functions are monotonic, whichever is chosen as f0 is.
So, since F0 v G, by monotonicity F1 = f0(F0) v f0(G).
But as G is a fixed point, f0(G) = G, so F1 v G. By the
same argument F2 v G, F3 v G, etc. By induction, we can
show that Fn v G. Thus, if the algorithm terminates with a
fixed point Fn, we can be sure that it is the least one, since
Fn v G, where G is a completely arbitrary fixed point.

To show termination we’ll show that the F iterates form a
chain, i.e., that F0 v f0(F0) = F1 v f1(F1) = F2 v · · · v
fn−1(Fn−1) = Fn. Since our poset doesn’t have any infinite
strictly increasing chains, eventually a fixed point must be
reached. In terms of the FIRST sets, we are saying they can’t
grow forever, which is obvious given that each FIRST set is
a subset of the finite set T ∪ {ε}.

Showing that the F iterates form a chain is the trickiest
part. We want to show that for any arbitrary i, Fi v fi(Fi) =
Fi+1. We will do this by inductively assuming that F0 up
through Fi form a chain, and use that assumption to show
that the chain continues on to Fi+1. Suppose that fi = fα

for some grammar symbol α. Looking at the definitions of
fa and fA, we see that for all x ∈ N ∪ T other than α,
Fi(x) = Fi+1(x). So, the only issue is whether Fi(α) ⊆
Fi+1(α). If fi is the first use of fα, i.e., there is no k such
that 0 ≤ k < i and fk also is fα, then clearly Fi(α) = {},
since F0(α) = {} and only fα changes this FIRST set. Thus
in this case we have Fi(α) = {} ⊆ Fi+1(α), and need only
to consider the remaining case, that fα had been previously
used. Let k be the most recent step where it was used, i.e.,
we have 0 ≤ k < i and fk = fi = fα, but for no j in the
range k < j < i does fj = fα. Because the other functions
leave α’s FIRST set unchanged, Fi(α) = Fk+1(α). From
our inductive hypothesis that we have a chain up to Fi, we
have Fk v Fi, and then by monotonicity of fα, fα(Fk) v
fα(Fi). In other words, Fk+1 v Fi+1. In particular, then,
Fk+1(α) ⊆ Fi+1(α). But recall that Fk+1(α) = Fi(α).
Thus we’ve shown, as desired, that Fi(α) ⊆ Fi+1(α) and so
Fi v Fi+1. Thus the chain, which we inductively assumed
reached at least as far as Fi, is shown to continue to Fi+1.
By induction, then, all the F s form a chain, completing our
proof that the non-deterinistic algorithm must terminate with
the least fixed point as its result.

Any deterministic algorithm, then, which performs one
of the various specific computations that the general non-
deterministic iteration is capable of, must also compute the
least fixed point of our collection of functions, i.e., FIRST.

Generalization

In teaching this material, it is important to point out what
features of the poset and of the set of functions we relied
upon, in order that the scope for generalization is apparent.

Our proof relied on the poset having a least element and no
infinitely ascending chains. In fact, our poset was finite, so
it was clear that it had no infinitely ascending chains. Even
some infinite posets, however, have this property, and some-
times these “infinitely wide but finitely high” posets arise in
data-flow analysis. We also relied on two properties of the
functions fa and fA. These functions are monotonic, and
they don’t interfere, because each changes only one of the
FIRST sets, and each changes a different FIRST set. Again,
these properties recur in many data-flow analysis contexts,
where the functions are monotonic and non-interfering.

Finally, it is important when teaching this material to point
out that these properties are essential to make this particu-
lar form of proof work, but not necessarily to make a non-
deterministic least fixed-point iteration work. Other proper-
ties can be used as the basis for other kinds of proofs.

Conclusions

The material presented in this paper, which I am advocat-
ing others incorparate into their compiler design courses, is
admittedly more sophisticated than much of what undergrad-
uates encounter. Yet if there is anywhere in the curriculum
where students can be expected to handle such material, it is
in the compiler design course. My own experience has been
that in a highly interactive small class, where the students
can actively participate in the construction of the proof, their
minds can expand to accomodate this proof without snap-
ping. Those compelled by class size to use a more conven-
tional lecture format might have more difficulty succesfully
incorporating this material, however.

Assuming this difficulty can be overcome, my experience
is that the atomsphere of magic that otherwise surrounds the
computation of FIRST is dispelled and iterative data-flow
analysis becomes less mysterious as well, since it becomes
the application of a (somewhat) familiar technique to a new
domain, rather than introducing both tecnique and domain.
A few of the students even see non-deterministic least fixed-
point iteration as aesthetically pleasing or “cool.”

References

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] FISCHER, C. N., AND LEBLANC, JR., R. J. Crafting a
Compiler. Benjamin/Cummings, 1988.

[3] GESER, A., KNOOP, J., LÜTTGEN, G., STEFFEN, B.,
AND RÜTHING, O. Chaotic fixed point iterations. Tech.

Rep. MIP-9403, Universität Passau, Fakultät für Mathe-
matik und Informatik, Oct. 1994.

