HW 2.26

Student One

MCS-236, Fall 2011

1 Show that a graph G is regular if and only if \bar{G} is regular.

Proof. [direct] a.) Show that a graph G is regular if \bar{G} is regular. If \bar{G} is regular, then all vertices in \bar{G} have a degree of r, where $0 \leq r \leq n-1$. By definition, every edge $x y$ of \bar{G} is not in $E(G)$, and every edge $x_{1} y_{1}$ of G is not in \bar{G}. So since every vertex v in \bar{G} has a degree of r, v is not adjacent to any of the r vertices to which it is adjacent in \bar{G}. But in G, v is also adjacent to any vertices not contained in its set of r neighbors in \bar{G}. However, v cannot be adjacent to itself either, so in G, v has $n-r-1$ additional neighbors. Thus, the degree of v in G is $r-r+n-r-1=n-r-1$. Therefore, every vertex v in G has a degree of $n-r-1$, so G is regular.
b.) Show that a graph \bar{G} is regular if G is regular. If G is regular, then all vertices in G have a degree of r, where $0 \leq r \leq n-1$. By definition, every edge $x y$ of G is not in $E(\bar{G})$, and every edge $x_{1} y_{1}$ of \bar{G} is not in G. Thus by the same logic as in (1.1), \bar{G} is regular if G is regular.

2 Show that if G and \bar{G} are both r-regular for some nonnegative integer r, then G has odd order.

Proof. [direct]
if G is regular for some nonnegative integer r, then by HW 2.26 [1], every vertex in \bar{G} must have a degree of $n-r-1$, where n is the order of G and \bar{G}. Since \bar{G} is also r-regular, $n-r-1=r$, so $n=2 r-1$. Since r is an integer, n is odd. Therefore, G has odd order.

