HW 2.26

Student One

MCS-236, Fall 2011

1 Show that a graph G is regular if and only if \overline{G} is regular.

Proof. [direct] a.) Show that a graph G is regular if \overline{G} is regular. If \overline{G} is regular, then all vertices in \overline{G} have a degree of r, where $0 \le r \le n-1$. By definition, every edge xy of \overline{G} is not in E(G), and every edge x_1y_1 of G is not in \overline{G} . So since every vertex v in \overline{G} has a degree of r, v is not adjacent to any of the r vertices to which it is adjacent in \overline{G} . But in G, v is also adjacent to any vertices not contained in its set of r neighbors in \overline{G} . However, v cannot be adjacent to itself either, so in G, v has n - r - 1 additional neighbors. Thus, the degree of v in G is r - r + n - r - 1 = n - r - 1. Therefore, every vertex v in G has a degree of n - r - 1, so G is regular.

b.) Show that a graph \overline{G} is regular if G is regular. If G is regular, then all vertices in G have a degree of r, where $0 \le r \le n-1$. By definition, every edge xy of G is not in $E(\overline{G})$, and every edge x_1y_1 of \overline{G} is not in G. Thus by the same logic as in (1.1), \overline{G} is regular if G is regular.

2 Show that if G and \overline{G} are both *r*-regular for some nonnegative integer r, then G has odd order.

Proof. [direct]

if G is regular for some nonnegative integer r, then by HW 2.26 [1], every vertex in \overline{G} must have a degree of n - r - 1, where n is the order of G and \overline{G} . Since \overline{G} is also r-regular, n - r - 1 = r, so n = 2r - 1. Since r is an integer, n is odd. Therefore, G has odd order.