HW 2.26

The Class

MCS-236, Fall 2011

Two graphs, G and \overline{G} , are complementary if they have the same vertex sets but have opposite edge sets in the following sense. For any two vertices s and v, the edge sv is either in E(G) or in $E(\overline{G})$, but not both.

If G and \overline{G} are complementary graphs of order n, we can clarify their relationship by reference to the complete graph K_n . The edge sets E(G) and $E(\overline{G})$ partition $E(K_n)$.

The degree of a vertex v in a graph G is the number of edges incident with v, which we will denote as $\deg_G v$. Similarly, we will denote the degree of v in the graph \overline{G} , as $\deg_{\overline{G}} v$.

Although we will turn our attention to regular graphs, we can first prove a more general result that applies to any complementary pair of graphs.

Lemma 1 For any vertex v in a graph G of order n, $\deg_G v + \deg_{\overline{G}} v = n-1$.

Proof. Since G and \overline{G} are complementary their edge sets partition the complete graph K_n . In K_n , each vertex is incident to n-1 edges. Therefore $\deg_G v + \deg_{\overline{G}} v = n-1$.

Theorem 1 A graph G is regular if and only if \overline{G} is regular.

Proof. The graph G is regular, so each vertex in G has the same degree, r. By Lemma 1, $r + \deg_{\overline{G}} v = n - 1$. Therefore, each vertex in \overline{G} has degree n - 1 - r. Thus \overline{G} is regular.

Theorem 2 If G and \overline{G} , two complementary graphs of order n, are both r-regular for some integer r, then n is odd.

Proof. Because G and \overline{G} are both r-regular, the degree of any vertex is r in each graph. By Lemma 1, r+r=n-1. Solving for n, we have n=2r+1. Since r is an integer, then 2r+1 is an odd integer, so n is odd.