
C H A P T E R N I N E

Generic Operations

9.1 Introduction

We described data abstraction in Chapter 6 as a barrier between the way a data
type is used and the way it is represented. There are a number of reasons to use
data abstraction, but perhaps its greatest advantage is that the programmer can rely
on an abstract mental model of the data rather than worrying about such mundane
details as how the data is represented. For example, we can view the game-state
ADT from Chapter 6 as a snapshot picture of an evolving Nim game and can view
lists as finite sequences of objects. The simplification resulting from using abstract
models is essential for many of the complicated problems programmers confront.
In this chapter we will exploit and extend data abstraction by introducing generic
operations, which are procedures that can operate on several different data types.

We rely on our mental model of an ADT when pondering how it might be used
in a program. To actually work with the data, however, we need procedures that
can manipulate it; these procedures are sometimes called the ADT’s interface. For
example, all of the procedures Scheme provides for manipulating lists comprise
the list type’s interface. The barrier between an ADT’s use and its implementation
results directly from the programming discipline of using the interface procedures
instead of explicitly referring to the underlying representation. The interface must
give us adequate power to manipulate the data as we would expect, given our mental
model of the data, but we still have some flexibility in how the interface is specified.
On the other hand, once we have specified the interface, we can easily imagine
that some of the interface procedures would be appropriate for other data types.
For example, most ADTs could benefit from a type-specific display procedure, if

243

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



244 Chapter 9 Generic Operations

only for debugging purposes; such a procedure should “do the right thing” for its
data, regardless of how the data is represented. Generic operators allow us to share
common operators among several different data types.

Another advantage of generic operators is that they can be used to maintain a
uniform interface over similar data types that have entirely different representations.
One example of this occurs when a data type can be represented in significantly
different ways. For instance, suppose we wish to implement an ADT date to represent
the date (i.e., the day, month, and year) when something occurs. One way to do
this would be by using a three-part data structure containing integers representing
the day, month, and year in the obvious manner (e.g., May 17, 1905, would be
represented by the triple (17, 5, 1905)). An altogether different way would be to
represent a date by the integer that equals the number of days that date fell after
January 1, 1900 (January 1, 1901, would be represented by 365 and May 17, 1905, by
1962). Which representation we use can have a significant impact on performance.
For example, if we want to determine whether a given date occurs in the month
of May, that would be easier to do using the first representation than the second.
On the other hand, if we want to find the number of days between two dates, the
relative difficulty would be reversed. Of course we can convert between the two
representations, but the formula would be quite messy in this case and in general
might entail significant computational complexity.

When forced to decide between significantly different representations, the pro-
grammer must make a judgment based on how the ADT is likely to be used. However,
in this chapter we’ll discover another option open to the programmer: allow mul-
tiple representations for the same abstract data type to coexist simultaneously. There
are cases where this proves advantageous. We work through the details of such an
example in Section 9.2.

More generally, it is not hard to imagine distinct data types that nonetheless share
some commonality of form or purpose. For example, a library catalog will contain
records of various kinds of items, say, books, movies, journals, and CDs. To a greater
or lesser extent, all of these types of catalog items share some common attributes
such as title, year of publication, and author (respectively, director, editor, and artist).
Each kind of catalog item might have a separate interface (such as the interface we
described for the movie ADT in Chapter 7). When combining the various types of
catalog items into a common database, however, it would be greatly advantageous
if they shared a common interface. We work through the details of this example in
Section 9.3.

9.2 Multiple Representations

Scheme represents lists of values by explicitly consing together the elements in the
list. Therefore there will be one cons pair per element in the list, which potentially
requires a considerable amount of computer memory. Other lists can be represented



9.2 Multiple Representations 245

more efficiently, however, especially if the lists have some regularity in them. For
example, if we know that a list consists of increasing consecutive integers in a given
range (for example, 3 through 100), rather than storing the list (3 4 5 ... 100),
we could instead store the first and last elements of the range (3 and 100). Note
that the standard list procedures can be easily computed in terms of the first and last
elements. For example, the length of the example list is 1002311 5 98 and its “cdr”
is the increasing consecutive list with first element 4 and last element 100. In this
section, we’ll show how we can allow this new representation to coexist seamlessly
with regular Scheme lists. To avoid confusion, we’ll think of both representations as
implementations of sequences and use the term list to mean Scheme lists. Similarly,
we’ll reserve the normal list notation, such as (1 2 3), for genuine Scheme lists,
and when we want to write down the elements of a sequence, we will do so as
k1, 2, 3l, for example.

Let’s step back a moment to consider how Scheme deals with lists. We remarked
in Chapter 7 that the choice of cons, car, cdr, and null? as the basic constructor
and selectors for lists ran counter to good data-abstraction practice because they don’t
sufficiently separate the use of lists from their representation. Even if we used more
descriptive names like make-list, head, tail, and empty-list?, the underlying
representation would be obscured but not fully hidden—head and tail are after all
the two components of the underlying representation (the “two-part list viewpoint”).
We will use more descriptive names like head and tail in our implementation of
sequences, but these two procedures will not have the same “core” status as they do
with Scheme lists.

In general, at least some of an ADT’s interface procedures must have direct access
to the underlying representation, whereas others might well be implemented in
terms of this basic set without direct reference to the underlying representation. For
example, we indicated in Chapter 7 how cons, car, cdr, and null? formed such
an essential set by showing how other list procedures such as length, list-ref,
and map could be written in terms of them. However, Scheme itself may have
a more complex representation that allows the other interface procedures to be
more efficiently implemented. For example, the representation might keep track
of the list’s length so that the length doesn’t have to be recalculated each time
by cdring down the list. To allow our implementation of sequences to provide all
operations as efficiently as possible, there will be no designated minimal set of core
procedures. Instead, we will view the ADT sequence as being specified by its entire
interface. That interface is implemented separately in terms of each underlying
representation.

So how do we implement sequences in a manner that allows these two (and
perhaps other) representations to coexist in a transparent manner? To start out, let’s
suppose that we will have a variety of constructors (at least one for each representa-
tion) but will limit ourselves to the following selectors, which are modeled after the
corresponding list procedures:



246 Chapter 9 Generic Operations

(head sequence)
; returns the first element of sequence, provided sequence is
; nonempty

(tail sequence)
; returns all but the first element of sequence as a
; sequence, provided sequence is nonempty

(empty-sequence? sequence)
; returns true if and only if sequence is empty

(sequence-length sequence)
; returns the length of sequence

We will implement sequences using a style of programming called message-passing,
which exploits the fact that procedures are first-class data objects in Scheme. The
data objects representing our sequences will not be passive: They will instead be
procedures that respond appropriately to “messages,” which are symbols representing
the various interface operations.

For example, we could write a procedure sequence-from-to that returns an
increasing sequence of consecutive integers in a given range as follows:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
(else (error "illegal sequence operation" op))))))

In this code, op is a symbol (the “message”) that represents the desired operator.
After evaluating the procedure above, we might then have the following interaction:

(define seq-1 (sequence-from-to 3 100))

(seq-1 ’head)
3



9.2 Multiple Representations 247

(seq-1 ’sequence-length)
98

(seq-1 ’tail)
#<procedure>

((seq-1 ’tail) ’head)
4

Although this style of programming will probably appear quite odd the first few
times you see it, a number of programming languages (notably Smalltalk and other
object-oriented languages) successfully exploit the message-passing approach. Nev-
ertheless, we can layer the more traditional interface on top of message-passing by
defining the interface procedures as follows:

(define head
(lambda (sequence)
(sequence ’head)))

(define tail
(lambda (sequence)
(sequence ’tail)))

(define empty-sequence?
(lambda (sequence)
(sequence ’empty-sequence?)))

(define sequence-length
(lambda (sequence)
(sequence ’sequence-length)))

Our earlier interaction would then contain the following more familiar code:

(head seq-1)
3

(sequence-length seq-1)
98

(head (tail seq-1))
4



248 Chapter 9 Generic Operations

Exercise 9.1

As is evident from the the output given above, we would be better able to check our
procedures if we could easily display the sequences we construct. Instead of writing
an ADT display procedure for sequences, an easier approach is to write a procedure
sequence->list that converts a sequence to the corresponding Scheme list, which
can then be directly displayed. Write this procedure, accessing the sequence only
through the interface procedures head, tail, and empty-sequence?.

Exercise 9.2

The sequences we just described are restricted to consecutive increasing sequences
of integers (more precisely, to increasing arithmetic sequences where consecutive
elements differ by 1). We can easily imagine similar but more general sequences
such as k6, 5, 4, 3, 2l or k5, 5.1, 5.2, 5.3, 5.4, 5.5l—in other words, general arithmetic
sequences of a given length, starting value, and increment (with decreasing sequences
having a negative increment value).

a. Write a procedure sequence-with-from-by that takes as arguments a length,
a starting value, and an increment and returns the corresponding arithmetic se-
quence. Thus, (sequence-with-from-by 5 6 -1) would return the first and
(sequence-with-from-by 6 5 .1) would return the second of the two pre-
ceding sequences. Remember that sequences are represented as procedures, so
your new sequence constructor will need to produce a procedural result.

b. The procedure sequence-from-to can now be rewritten as a simple call to
sequence-with-from-by. The original sequence-from-to procedure made
an empty sequence if its first argument was greater than its second, but you
should make the new version so that you can get both increasing and de-
creasing sequences of consecutive integers. Thus, (sequence-from-to 3 8)
should return k3, 4, 5, 6, 7, 8l, whereas (sequence-from-to 5 1) should return
k5, 4, 3, 2, 1l.

c. Write a procedure sequence-from-to-with that takes a starting value,
an ending value, and a length and returns the corresponding arithmetic
sequence. For example, (sequence-from-to-with 5 11 4) should return
k5, 7, 9, 11l.

Having given constructors for arithmetic sequences, we can add sequences rep-
resented by traditional Scheme lists by writing a procedure list->sequence that
returns the sequence corresponding to a given list:



9.2 Multiple Representations 249

(define list->sequence
(lambda (lst)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(null? lst))
((equal? op ’head)
(car lst))
((equal? op ’tail)
(list->sequence (cdr lst)))
((equal? op ’sequence-length)
(length lst))
(else (error "illegal sequence operation" op))))))

In essence, we are off-loading each of the sequence procedures to the corresponding
list procedure. Note that to the user, the various representations of sequences work
together seamlessly and transparently:

(define seq-2 (sequence-with-from-by 6 5 -1))

(define seq-3 (list->sequence ’(4 3 7 9)))

(head seq-2)
5

(head seq-3)
4

In a sense, each of the interface procedures triggers a representation-specific behavior
that knows how to “do the right thing” for its representation.

Exercise 9.3

Use list->sequence to write a procedure empty-sequence that takes no argu-
ments and returns an empty sequence.

Exercise 9.4

One disadvantage with the preceding version of list->sequence is that the Scheme
procedure length normally has linear complexity in the list’s length (unless the
version of Scheme you use does something like the trick we will now describe that
reduces sequence-length to constant complexity).



250 Chapter 9 Generic Operations

a. Modify list->sequence so that it has a let expression that computes the list’s
length once at sequence construction time and then uses that value when asked
for the sequence’s length.

b. The problem with the solution in part a is that the tail’s length is computed each
time you return the tail. Because the complexity of calculating a list’s length is
proportional to the length, if you do the equivalent of cdring down the sequence,
the resulting complexity is quadratic in the list-sequence’s length, certainly an
undesirable consequence.

One solution to this problem is to write an auxiliary procedure list-
of-length->sequence that is passed both a list and its length and re-
turns the corresponding sequence. This procedure can efficiently compute
its tail, and list->sequence can be reimplemented as a call to list-
of-length->sequence. Carry out this strategy.

This solution seems to nicely accomplish our goal of seamlessly incorporating
different underlying representations, but because we have only implemented the
four selectors head, tail, empty-sequence?, and sequence-length, we have not
really tested the limits of this approach. To do so, let’s attempt to add the selector
and constructors corresponding to list-ref, cons, map, and append.

The selector that corresponds to list-ref differs significantly from the other
selectors we’ve seen so far. Each of those takes only one parameter (the sequence)
and, as a result, always returns the same value for a given sequence. In contrast,
sequence-ref will take two parameters, a sequence and an integer index, and the
value returned will depend on both the sequence and the index. Consequently,
the cond branch corresponding to sequence reference in sequence-from-to or
list->sequence should be a procedure that takes an integer index n and returns
the nth number in the sequence. To see how this works, here is the expanded version
of sequence-from-to that includes a branch for sequence reference:

(define sequence-from-to
(lambda (low high)
(lambda (op)
(cond ((equal? op ’empty-sequence?)

(> low high))
((equal? op ’head)
low)
((equal? op ’tail)
(sequence-from-to (+ low 1) high))
((equal? op ’sequence-length)
(if (> low high) 0 (+ (- high low) 1)))
;;(continued)



9.2 Multiple Representations 251

((equal? op ’sequence-ref)
(lambda (n)
(if (and (<= 0 n) (<= n (- high low)))

(+ low n)
(error "sequence-from-to: index out of range"

n))))))))

We can then implement sequence-ref as follows:

(define sequence-ref
(lambda (sequence n)
((sequence ’sequence-ref) n)))

Exercise 9.5

Rewrite list->sequence so that it has a branch for sequence reference.

The remaining three operators we will add to sequences correspond to the
list operators cons, map, and append; for simplicity, we will call these operators
sequence-cons, sequence-map, and sequence-append. Note that all three of
these operators are in fact constructors, because their agenda is to create a new se-
quence from the given data. Therefore, rather than being implemented as branches
of the conds of the other sequence constructors, we should simply write a new
sequence constructor for each of these operators.

Consider sequence-cons, which is passed an element (to become the head) and
an already-constructed sequence (to become the tail). Following is an implemen-
tation of sequence-cons that uses a let in order to calculate its length once and
for all:

(define sequence-cons
(lambda (head tail)
(let ((new-length (+ 1 (sequence-length tail))))
(lambda (op)
(cond ((equal? op ’empty-sequence?)

#f)
((equal? op ’head)
head)
((equal? op ’tail)
tail)
((equal? op ’sequence-length)
new-length)
;;(continued)



252 Chapter 9 Generic Operations

((equal? op ’sequence-ref)
(lambda (n)
(if (= n 0)

head
(sequence-ref tail (- n 1)))))

(else (error "illegal sequence operation" op)))))))

Note that we need not worry what “kind” of sequence tail is, because we are assured
that whichever representation tail uses, it knows how to appropriately calculate
sequence-length and sequence-ref. In particular, we can be sure that compu-
tational efficiencies constructed into tail (for example, in sequence-length) are
maintained in sequence-cons.

Exercise 9.6

Write the sequence constructor sequence-map, that outwardly acts like the list
procedure map. However unlike map, which applies the procedural argument to all
the list elements, sequence-map should not apply the procedural argument at all
yet. Instead, when an element of the resulting sequence (such as its head) is accessed,
that is when the procedural argument should be applied.

We finally arrive at the sequence constructor sequence-append. Just as we’ve
shown how append can be used to append together two lists, we’ll write
sequence-append such that it can append together any two sequences:

(define sequence-append

(lambda (seq-1 seq-2)

(cond ((empty-sequence? seq-1) seq-2)
((empty-sequence? seq-2) seq-1)

(else

(let ((seq-1-length (sequence-length seq-1))

(seq-2-length (sequence-length seq-2)))

(lambda (op)

(cond ((equal? op ’empty-sequence?)

#f)

((equal? op ’head)

(head seq-1))

((equal? op ’tail)
(sequence-append (tail seq-1) seq-2))

((equal? op ’sequence-length)

(+ seq-1-length seq-2-length))

;;(continued)



9.3 Exploiting Commonality 253

((equal? op ’sequence-ref)

(lambda (n)
(cond ((< n seq-1-length)

(sequence-ref seq-1 n))

(else

(sequence-ref seq-2

(- n seq-1-length))))))

(else (error "illegal sequence operation"

op)))))))))

As with sequence-cons, the let expression is used primarily for efficiency. Note,
however, that the length of the first subsequence is also used in sequence-ref to
determine which subsequence to reference at what index.

9.3 Exploiting Commonality

Imagine that you have parlayed the movie query system from Chapter 7 into such
an enormous success that it is currently being used by three major video store chains
(not to mention the pirated versions being used by less honorable dealers). You have
extended the natural language interface of your program (which you nicknamed
Roger) to such an extent that many people think of Roger as a friend, and a few
even consult him about their love life and other such befuddling aspects of their
existence.

You were recently contacted by the owner of the Twilight Coffeehouse/Bookstore,
who, in addition to selling books, also sells compact discs and rents obscure but
interesting videos. She is very interested in extending Roger so that he could be
consulted about books and CDs as well as videos. She already has two database
programs, one for her books and and one for her CDs (surprisingly, done in Scheme
as well), but she prefers the Roger interface. What she would like to do is to combine
these two databases and your video database into one large database. A tantalizing
idea indeed, but how could it be done?

Combining the three databases involves more than just gluing the lists of records
together; you also need to provide procedures that operate on the individual records
in this new database. But there’s a catch here: Each of those individual records could
represent a book, a video, or a CD. Books, videos, and CDs have many properties in
common; for example, each has a title and a year released. Also, the book’s author
more or less corresponds to the movie’s director and the CD’s recording artist. On
the other hand, some attributes do not have obvious correlates from one data type
to another (e.g., the actors in a movie have no obvious analogue in books or CDs).
Ideally, we would like to have an interface that is as uniform as possible across the
three underlying data types.



254 Chapter 9 Generic Operations

But speaking of an interface seems premature. After all, we defined an interface as
the set of procedures that operate on an ADT, and we do not yet have a single ADT.
From the point of view of generic operations, we can get around this problem by
hypothesizing an ADT catalog-item that captures the commonality among the three
underlying ADTs. Any given catalog-item will in fact be a movie, book, or CD (or
any other catalog-item-like type we might later add), so movies, for example, might
be called a “class” of catalog items. (We are essentially introducing here a form of
class hierarchy that is a core concept in object-oriented programming, which we will
describe in detail in Chapter 14.)

In order to fully specify the interface for catalog items, let’s write down the
operations for each of the databases, grouping together those that are similar. Thus,
we have three different operations for finding a title, three different operations for
finding the year in which an object was made, and so on. The result is the table
in Figure 9.1. The individual entries of the table are the procedures that operate
on data of the given type. The columns of the table organize the operations by
type, and the rows of the table group the analogous operations among the three
types under a generic name indicating what is being done. In some cases (title,
year-made, and display-item) there are obvious correlates for each of the three
types. In other cases, such as actors, there are no obvious correlates, which leads
to blanks in the table. In some cases, however, there are close analogues that we
wrote in the table under more generic names (creator and company). Note that
company applies to only two of the three data types because our movie database
didn’t contain information about movies’ distributors. The names of the rows are
precisely the generic operators we want to implement as the interface for catalog
items.

We are left with the question of how we actually implement these generic oper-
ators. (Note that we are assuming that the three underlying types are already fully
implemented, and our goal is to combine them in as transparent a manner as pos-
sible.) One method of accomplishing this would be to use the message-passing style
of Section 9.2; we choose not to do it that way, mainly because we will take this
opportunity to introduce another approach to genericity that involves tagging the

movie book cd

title movie-title book-title cd-title

year-made movie-year-made book-year-made cd-year-made

display-item display-movie display-book display-cd

creator movie-director book-author cd-artist

company book-publisher cd-record-company

actors movie-actors

Figure 9.1 Operation table for Movies, Books, and CDs



9.3 Exploiting Commonality 255

data with its type. In addition to allowing us to explore a new technique, this lat-
ter approach is slightly more suited to the integration of already-existing types than
message-passing. We will work through two variants of this type-tagging approach.

Generic Operations through Symbolic Type Tags

Our first variant of the type-tagging approach involves attaching a symbolic tag, or
label, to each piece of data that indicates whether the datum is a book, video, or
CD. Then, when we write a generic procedure, we take a tagged datum, look at its
tag, and use that to determine which operation to apply.

Tagging data is fairly simple. We need to create an ADT that binds together each
datum with its tag. For example, we can do the following:

(define tagged-datum
(lambda (type value)
(cons type value)))

(define type car)

(define contents cdr)

The type argument could in general be various things; for now it will be a symbol
that “names” the given type.

Exercise 9.7

Write a procedure list->tagged-list that takes a list of untagged elements and
a type and returns the corresponding list where each element has been tagged by
the given type tag. Thus, if movies is a list of movie records, you can define a
(symbolically) tagged list of movie records by evaluating:

(define tagged-movies
(list->tagged-list movies ’movie))

If our three databases are lists called movies, books, and cds, then we could create
the combined database as follows:

(define database
(append (list->tagged-list movies ’movie)

(list->tagged-list books ’book)
(list->tagged-list cds ’cd)))



256 Chapter 9 Generic Operations

How can we implement the generic operations? Probably the most obvious way
is to do so one operation at a time. Viewed in terms of the table in Figure 9.1, we
are filling out the table row by row. Assume that the data has been tagged as in
Exercise 9.7, with each element tagged with one of the symbols movie, book, or cd.
We can then easily test the type of a given item by using the following predicates:

(define movie?
(lambda (x)
(equal? (type x) ’movie)))

(define book?
(lambda (x)
(equal? (type x) ’book)))

(define cd?
(lambda (x)
(equal? (type x) ’cd)))

Using these predicates, the generic operations become easy to write. For example,
here is title:

(define title
(lambda (x)
(cond ((movie? x) (movie-title (contents x)))

((book? x) (book-title (contents x)))
((cd? x) (cd-title (contents x)))
(else (error "unknown object in title" x)))))

Exercise 9.8

In the course of integrating databases, some of the operations that seem analogous
between types might have some annoying differences. For example, suppose that the
movie directors and actors have their names stored as lists with the family names last,
whereas for books and CDs the authors’ and artists’ names are stored with family
names first. Suppose that you decide for consistency’s sake and ease of display to
have all of the generic procedures return the names with the family name last.

a. Write a procedure family-name-last that takes a name (as a list of symbols)
with family name first and returns the corresponding list with family name last.

b. Use family-name-last to write a generic operation creator that returns the
name with the family name last in all cases.



9.3 Exploiting Commonality 257

Implementing generic operations becomes somewhat more delicate when an op-
eration doesn’t apply across the three types, say, for example, actors. One possibility
would be to signal an error when this occurs. For example, we could handle the
operation actors by using error:

(define actors
(lambda (x)
(cond ((movie? x) (movie-actors (contents x)))

(else (error "Cannot find the actors of the given type"
(type x))))))

If we choose this approach, we must modify the query system appropriately. For
example, suppose Roger were asked the following question:

(what films was randy quaid in)

Then the action matching this pattern must not apply the operation actors to all
items in the database because otherwise it will signal an error. This means that in
this case the database must first be filtered by the predicate movie?. In general,
patterns that clearly indicate the type of the desired records should first filter the
database by the type’s predicate.

Exercise 9.9

An alternative approach to this problem is to return a testable value, for example,
the empty list, if there is no procedure for the given operation and type. Discuss this
approach, especially as it pertains to Roger.

Exercise 9.10

Because we have posed our problem in terms of integrating databases, we should
not assume that the result will be the last word in entertainment databases. After
all, we might add a new type (say magazines), a new piece of information (perhaps
the cost for rental or purchase), or some other increased functionality. Let’s consider
how difficult these tasks would be using the current approach to generic operations.

a. Discuss what you would need to do to integrate a magazine database into the
current one consisting of movies, books, and CDs. What changes would you have
to make to the generic operations you have already written?

b. Discuss what you would need to do to add a new generic operation, for example,
the cost for rental or purchase of the given item.



258 Chapter 9 Generic Operations

c. Discuss what you would need to do to add a single entry to the operation table,
for example, adding a way of finding a movie’s distributor to the “company” row
of the table.

Operation Tables as Type Tags

In the variant of the type-tagging approach described above, we symbolically tagged
the data as being of a given type and wrote the generic operations using a cond
that branched on the allowable types for the operation. Viewed in terms of the
operation table of Figure 9.1, this approach fills the table out row by row, which is
to say operation by operation. One could argue that there would be advantages to
an approach that more directly mirrors how the individual databases were originally
constructed, namely, type by type. If we had used message-passing as suggested at
the beginning of this section, we would have had a separate constructor for each
underlying type, precisely this desired approach. But there would also be a great deal
of redundancy in the message-passing implementation: After all, each of the movies
contains a variant of the same general method for responding to the operations;
individual movies only differ in their “content” data. You might well argue that this
is precisely the point, and you would be correct. But somehow or other, these general
methods of responding seem more appropriately associated with the type than with
each of the separate data objects.

Is there some way to combine the two approaches? One way to do this would be to
tag the data as in the preceding subsection but let the type tags provide the general
procedures for performing the operations instead of merely being symbolic type
names. In other words, the tags would correspond to the columns of the operation
table. In effect, each type would be a one-dimensional table that stores the particular
procedure to be used for each of the various generic operations.

Let’s implement a type ADT, which contains the name of the type as well as the
operation table, because it will prove useful to know the name of the type when
reporting errors:

(define make-type
(lambda (name operation-table)
(cons name operation-table)))

(define type-name car)

(define type-operation-table cdr)

We implement one-dimensional tables (the columns of the full operation table) as
an abstract data type with a constructor make-table that will make a table from a
list of the symbols denoting the operations and a list of the corresponding procedures



9.3 Exploiting Commonality 259

to be used for those operations on the given type. For example, we would define the
type movie as

(define movie

(make-type ’movie

(make-table

’(title year-made director actors creator display-item)

(list movie-title movie-year-made movie-director

movie-actors movie-director display-movie))))

Having defined the types book and cd as well, we could then define our tagged
database as follows:

(define database
(append (list->tagged-list movies movie)

(list->tagged-list books book)
(list->tagged-list cds cd)))

Notice that the tags are no longer simply symbols but are instead type objects that
also contain the column of the operation table corresponding to the type of the
tagged data item.

At this point each data object includes not only its particular component values
but also has access to the column of the operation table that tells how to do the
various operations. What we need now is a procedure, which we will call operate,
that when given the name of an operation and a tagged data value, looks up the
appropriate procedure in the data value’s operation table and applies that procedure
to the contents of the (tagged) data value. Thus we could use operate to define the
generic operation title as follows:

(define title
(lambda (tagged-datum)
(operate ’title tagged-datum)))

How do we define operate? Clearly we must look up the operation name in the
operation table and apply the corresponding procedure (if it exists) to the contents of
the given data object. If no such procedure is found for the given operation, an error
should be reported. This process is complicated. It would probably be best to have
operate spin the table-searching tasks off onto another more general table-lookup
procedure, to which it passes the necessary arguments. We will define a procedure
table-find, which is passed the operation table, the name of the operation, a
procedure that describes what to do if the operation is found in the given table,



260 Chapter 9 Generic Operations

and a procedure that describes what to do if it is not found. Thus, we would call
table-find as follows:

(define operate
(lambda (operation-name value)
(table-find (type-operation-table (type value))

operation-name
(lambda (procedure) ; use this if found
(procedure (contents value)))

(lambda () ; use this if not found
(error "No way of doing operation on type"

operation-name
(type-name (type value)))))))

Note that the procedure that operate supplies to table-find for use if the table
lookup is successful takes one argument, namely, the procedure that was found in
the table. In contrast, the procedure that operate supplies to table-find for the
not-found case takes no arguments; it simply reports the error that occurred.

At this point, we need to define the table ADT, with its make-table and
table-find operations. There are many plausible representations for tables; here,
we’ll opt for simplicity and just cons together into a pair the list of keys and the list
of values:

(define make-table
(lambda (keys values)
(cons keys values)))

The procedure table-find simply cdrs down the two lists, looking in the list of
keys for the desired key, (i.e., the operation name):

(define table-find
(lambda (table key what-if-found what-if-not)
(define loop
(lambda (keys values)
(cond ((null? keys) (what-if-not))

((equal? key (car keys))
(what-if-found (car values)))
(else
(loop (cdr keys) (cdr values))))))

(loop (car table) (cdr table))))



9.3 Exploiting Commonality 261

Exercise 9.11

How would you implement the type predicates such as movie? using this represen-
tation with type tags containing operation tables?

Exercise 9.12

Discuss the questions from Exercise 9.10 in terms of the operation-table type-tag
representation.

Exercise 9.13

Through this entire section, we’ve been glossing over a minor difficulty, namely, that
many books are coauthored. Thus, it would be more likely that the book database
actually supported a book-authors operation, which returns a list of authors, rather
than the book-author operation we’ve been presuming. The primary difficulty this
would cause is that we’d wind up with a creator generic operation that returns a
single director for a movie, but a list of authors for a book. If we were processing a
query like (what do you have by John Doe), we would have to in some cases
test for equality between (John Doe) and the creator and in other cases test for
membership of (John Doe) in the creator list.

a. How would you arrange, at database integration time, for there to be a creators
generic operation that returned a list of creators for any type of object, even
a movie? Assume that the movie database is unchanged, so there is still just
a singular director, whereas the book database is now presumed to have the
book-authors operation. (Which assumption seems more plausible for CDs?)

b. An alternative would be to change the movie database to directly support a list
of directors, rather than a single director, for each movie. What are the relative
advantages and disadvantages of the two approaches?

In the next section you’ll have an opportunity to apply the technology of generic
operations; we also use it as a tool while covering other topics in the next two
chapters. We’ll return to our consideration of generic operations as a topic of study
in its own right in Chapter 14, which discusses object-oriented programming. The
implementation technique we use there is a variant of the “operation tables as type
tags” theme, with techniques we’ll encounter in the meantime used to improve the
efficiency of the table lookup.



262 Chapter 9 Generic Operations

9.4 An Application: Computer Graphics

In this section, we’ll look inside graphics operations like those used in Chapters 1
through 4. We’ll show how to use the message-passing technique to implement those
graphics operations in terms of lower-level ones. In fact, we’ll serve up a double
helping of generic operations because there are two different abstract data types we’ll
use:

Drawing media, on which we can perform the basic graphics operations of drawing
lines and filled triangles

Images, which can be arbitrarily complex assemblies so long as they know how to
draw themselves onto a medium

First, let’s consider why we want to treat images as an abstract data type with
generic operations that can be used across multiple implementations. We have lots
of different kinds of images from simple ones such as lines and filled triangles to
more complex images such as pinwheeled quilts and c-curve fractals. Nonetheless,
there are certain operations we want to perform on any image, without needing
to know what kind of image it is. For example, we should be able to find the
width and height of any image. If nothing else, this information is needed for error
checking when we perform stacking and overlaying operations. (Only images of the
same width can be stacked, and only images of the same width and height can be
overlaid.) We also want to be able to draw an image onto a drawing medium in a
single simple operation, without concerning ourselves with what conglomeration of
lines and triangles may need to be drawn.

The situation with drawing media is a bit more interesting. First, there can be
multiple forms of graphics output. For example, we can draw onto an on-screen
window, or we can “draw” by writing to a file stored in some graphics file format,
for later use. Thus we can foresee having at least two kinds of drawing media:
windows and files. We can perform the same basic operations of drawing lines
and filled triangles in either case but with different results depending on the kind
of medium we are drawing on. Because we’ll use generic operations to uniformly
access any medium, we’ll be able to construct complex images that know how to
“draw themselves” on any medium, without the images needing to be aware of the
different kinds of media. Additionally, we will show how we can layer a new “virtual
medium” on top of an existing medium. We do this layering to make it easy to
perform a transformation, such as turning an image.

Before we begin looking closely at images and drawing media, we need to take
care of two details. First, both images and drawing media use a two-dimensional
coordinate system. For example, if we wanted to create an image with a line, we
would specify the two coordinates for each of the line’s two endpoints. Now that



9.4 An Application: Computer Graphics 263

we’ve learned how to make compound data, we can make a point ADT. We define
the constructor and selectors for points as follows:

(define make-point cons)

(define x-coord car)

(define y-coord cdr)

We’ll use the convention that x coordinates increase from left to right and y co-
ordinates increase from bottom to top. This is mathematically conventional but not
in agreement with all computer systems’ conventions. On some computer systems,
the y coordinates in a window start with 0 at the top and increase as you go down
the screen. On such a system, the low-level type of drawing medium for drawing on
windows will need to take care of reversing the y coordinates.

We will, however, use two different ranges of coordinate values. One range is for
images and so will be used for the arguments the user provides to the constructors of
fundamental images, make-line and make-filled-triangle. For convenience
and consistency with earlier chapters, these two constructors expect points with
coordinates in the range from 21 to 1.

Our other range of coordinates will be used for doing the actual drawing on
drawing media. For this drawing, we’ll use coordinates that range from 0 up to the
width or height of the medium. What units do we use to measure the width and
height? We do not specify the unit of measure, but one reasonable unit for images
displayed on a computer screen would be the size of a pixel, that is, one of the little
dots that the computer can individually light up. For example, a 100 3 200 medium
might be drawing to a window of those dimensions so that valid x coordinates for
drawing on the medium range from 0 at the far left to 100 at the far right, whereas
the valid y coordinates range from 0 at the bottom to 200 at the top. We chose this
coordinate system, with the origin in the lower left-hand corner rather than in the
center, because it will simplify the calculations needed to stack images.

The second detail we need to take care of is providing an interface that hides our
decision to use the message-passing style. That is, each image or drawing medium
will be represented as a procedure that can perform the various operations when
passed an appropriate symbolic message indicating the desired operation. However,
our users will be thinking that various operations are performed on the images. Thus,
we’ll define the following interface procedures:

;; Interface to image operations

(define width
(lambda (image)
(image ’width)))



264 Chapter 9 Generic Operations

(define height
(lambda (image)
(image ’height)))

(define draw-on
(lambda (image medium)
((image ’draw-on) medium)))

;; Interface to drawing medium operations

(define draw-line-on
(lambda (point0 point1 medium)
((medium ’draw-line) point0 point1)))

(define draw-filled-triangle-on
(lambda (point0 point1 point2 medium)
((medium ’draw-filled-triangle) point0 point1 point2)))

At this point, we know what operations we can invoke on an image or a medium,
even though we don’t have any images or media on which to invoke those oper-
ations. Conversely, we know what operations any image or medium we construct
will need to support. By putting these two kinds of information together, we can
begin to write some constructors. We’ll start with the constructors for two funda-
mental images, make-line and make-filled-triangle. (We’ve chosen to call
these procedures make-line and make-filled-triangle, rather than line and
filled-triangle, to help you distinguish the procedures we’re writing in this sec-
tion from the predefined ones we used in the earlier chapters. We’ll similarly avoid re-
using other names.) These images support the draw-on operation for drawing them-
selves on a medium by using the draw-line-on and draw-filled-triangle-on
interface operations specified above for media.

We’ll need to make a rather arbitrary choice of size for these two fundamental
images. (Other images, formed by stacking, turning, etc., will have sizes that derive
from this basic image size.) The best choice depends on where the medium is doing
its drawing; for example, if the medium is drawing on your computer screen, the
best choice depends on such issues as the size of your computer’s screen. However,
the following value is probably in a plausible range:

(define basic-image-size 100)

Recall that make-line and make-filled-triangle need to convert from the user’s
coordinate range of 21 to 1 into the drawing medium’s coordinate range, which will



9.4 An Application: Computer Graphics 265

be from 0 to basic-image-size. We can convert a point from one range to the
other using the following procedure:

(define transform-point ; from -1 to 1 into 0 to basic-image-size

(lambda (point)
(define transform-coord

(lambda (coord)

(* (/ (+ coord 1) 2) ; fraction of the way to top or right

basic-image-size)))

(make-point (transform-coord (x-coord point))

(transform-coord (y-coord point)))))

With these preliminaries in place, we can write our first image constructor:

(define make-line
(lambda (point0 point1)
(lambda (op)
(cond
((equal? op ’width) basic-image-size)
((equal? op ’height) basic-image-size)
((equal? op ’draw-on)
(lambda (medium)
(draw-line-on (transform-point point0)

(transform-point point1)
medium)))

(else (error "unknown operation on line" op))))))

As you can see, a line responds to queries about its width and height by reporting
our basic-image-size, and it draws itself on a medium in the obvious way, by
drawing a single line on that medium. So far, the image hasn’t added any interesting
functionality to that provided by the drawing medium itself. But remember, images
can be more complex. For example, we could have an image that was a c-curve
fractal of level 10. When we invoke its draw-on operation to draw it on a medium,
1024 draw-line-on operations will be performed on the medium for us.

So that you can test the preceding line constructor, we need to give you some
way of making a drawing medium that actually displays an image on your screen.
Later in this section we’ll show how drawing media can be constructed, by working
through the example of a type of drawing medium that writes a particular graphics
file format. Meanwhile, you can use a procedure called show that’s provided on
the web site for this book. We provide specific versions of show for various different
computer systems. You apply show to an image that needs to be shown, as in the call

(show (make-line (make-point 0 0) (make-point 1 1)))



266 Chapter 9 Generic Operations

The show procedure is more than just a drawing medium, however. First, show
takes care of some system-dependent matters, such as opening a window that is the
same size as the image. Then show constructs a drawing medium for drawing on
that window (in some system-dependent way) and passes it to the image’s draw-on
procedure. When the drawing is all done, show takes care of any system-dependent
wrap-up that needs to be done, such as notifying the system that the window is
complete.

In the earlier chapters, we assumed that images constructed using the predefined
image procedures were automatically shown, without needing to explicitly use a
procedure such as show. The way this is implemented is that the Scheme system
itself applies show when the value of a computation is an image, just as when the
value is a number, it displays the digits representing the number. Thus show (or an
analogue) was really at work behind the scenes. In this chapter we make it explicit.

We mentioned above that the images can be much more complex, like that 1024-
line level-10 c-curve. However, before we move on to how these complex images are
constructed, one other image type directly reflects the abilities of drawing media.

Exercise 9.14

Write the make-filled-triangle image constructor. It should take three points as
arguments, each with coordinates in the 21 to 1 range. It should produce an image
with the basic-image-size as its width and height, drawn on a medium as a filled
triangle.

Now we are ready to consider how to build more complex images. We’ll start
with overlaying two images, because that is all we need to construct our c-curve
example. Such an image should be able to report its height or width and should be
able to draw itself. The size issue is fairly simple to deal with, but how do we get an
overlaid image to draw itself? The answer is to use the fact that an overlaid image is
a composite of two other images. When the overlaid image is asked to draw itself on
a medium, it simply passes the buck to its two constituent images by asking them to
draw themselves on that medium. This leads to the following constructor:

(define make-overlaid-image
(lambda (image1 image2)
(if (not (and (= (width image1) (width image2))

(= (height image1) (height image2))))
(error "can’t overlay images of different sizes")
(lambda (op)
(cond ((equal? op ’width) (width image1))

((equal? op ’height) (height image1))
;;(continued)



9.4 An Application: Computer Graphics 267

((equal? op ’draw-on)
(lambda (medium)
(draw-on image1 medium)
(draw-on image2 medium)))

(else
(error "unknown operation on overlaid image"

op)))))))

Notice that this is both a producer and a consumer of the interface we specified for
images. Because what it produces is an image, the result needs to provide the width,
height, and draw-on operations. Because that composite image is built from two
preexisting images, it can count on image1 and image2 to be able to report their
own width and height and to draw themselves appropriately. That way we don’t need
to care what sort of images are being overlaid.

You can try out the code thus far by using the c-curve procedure, rewritten in
terms of our new constructors:

(define c-curve
(lambda (x0 y0 x1 y1 level)
(if (= level 0)

(make-line (make-point x0 y0) (make-point x1 y1))
(let ((xmid (/ (+ x0 x1) 2))

(ymid (/ (+ y0 y1) 2))
(dx (- x1 x0))
(dy (- y1 y0)))

(let ((xa (- xmid (/ dy 2)))
(ya (+ ymid (/ dx 2))))

(make-overlaid-image
(c-curve x0 y0 xa ya (- level 1))
(c-curve xa ya x1 y1 (- level 1))))))))

With this definition in place, and using the show procedure we mentioned earlier to
provide an appropriate on-screen drawing medium, you could do (show (c-curve
0 -1/2 0 1/2 8)) to see a level-8 c-curve.

Let’s now consider the example of turning an image a quarter turn to the right,
as we did in designing quilt covers. We can use the ability to have different kinds
of drawing media to great advantage here. When we want a turned image to draw
itself on a particular medium, the turned image will create a new “virtual” medium
layered on top of the given medium. This new medium takes care of doing the
turning. In other words, when a turned image is asked to draw itself onto a base
medium, it will pass the buck to the original image by asking it to draw itself on the
virtual medium. The original image then asks the virtual medium to draw some lines



268 Chapter 9 Generic Operations

and/or triangles. The virtual medium responds to each of these requests by asking
the base medium to draw a rotated version of the requested line or triangle.

How does the virtual medium turn the lines and triangles? The key to this turning
is that we really only need to move the endpoints of the lines or the vertices of the
triangle. A point that is near the left end of the medium’s top edge will need to
transformed to a point near the top of the right-hand edge of the base medium, and
a point at the center of the left edge will be transformed to a point at the center top.
To turn a line connecting these two points, the virtual medium simply transforms
each of the points and then asks the base medium to draw a line connecting the two
transformed points.

When we write the constructor for this virtual medium, we’ll assume that we have
a transform procedure that can take care of transforming one point. That is, if we
apply transform to the top center point, we get the center point of the right edge
back. Given this point transformer, we can build the transformed medium using the
following constructor:

(define make-transformed-medium
(lambda (transform base-medium)
(lambda (op)
(cond
((equal? op ’draw-line)
(lambda (point0 point1)
(draw-line-on (transform point0) (transform point1)

base-medium)))
((equal? op ’draw-filled-triangle)
(lambda (point0 point1 point2)
(draw-filled-triangle-on (transform point0)

(transform point1)
(transform point2)
base-medium)))

(else
(error "unknown operation on transformed medium"

op))))))

Just as make-overlaid-image was both a producer and a consumer of the image
interface, so too is make-transformed-medium both a producer and a consumer of
the drawing medium interface. It constructs the new medium as a “wrapper” around
the old medium—all operations on the new medium are translated into operations
on the old medium.

For the specific problem of turning an image a quarter turn to the right, consider
the quarter turn illustrated in Figure 9.2. Clearly the width and height are inter-
changed in the turned image, and the x coordinate of a transformed point is the



9.4 An Application: Computer Graphics 269

(x,y)

x

y

h

w

x

y

h

w

w–x
(y,w–x)

Figure 9.2 Illustration of what happens to the width, height, and a point (x, y) when an image is
turned. The turned point has coordinates (y, w 2 x) where w is the width of the base image.

original point’s y coordinate. (In our earlier example, this explains why a point on
the top edge maps into a point on the right-hand edge.) Furthermore, we can obtain
the transformed point’s y coordinate by subtracting the original point’s x coordinate
from the new height, which is the old width. This leads to the following code:

(define make-turned-image ; quarter turn to the right
(lambda (base-image)
(define turn-point
(lambda (point)
;; y becomes x, and the old width minus x becomes y
(make-point (y-coord point)

(- (width base-image) (x-coord point)))))
(lambda (op)
(cond
((equal? op ’width) (height base-image))
((equal? op ’height) (width base-image))
((equal? op ’draw-on)
(lambda (medium)
(draw-on base-image

(make-transformed-medium turn-point medium))))
(else (error "unknown operation on turned image" op))))))

You could test this out using lines, but if you’ve written make-filled-triangle,
you can also try quarter turns out in their familiar context of quilting basic blocks,
such as the two below:



270 Chapter 9 Generic Operations

(define test-bb
(make-filled-triangle (make-point 0 1)

(make-point 0 -1)
(make-point 1 -1)))

(define nova-bb
(make-overlaid-image
(make-filled-triangle (make-point 0 1)

(make-point 0 0)
(make-point -1/2 0))

(make-filled-triangle (make-point 0 0)
(make-point 0 1/2)
(make-point 1 0))))

Of course, we don’t have to limit ourselves to just explicating the kind of image
operations we used in earlier chapters. We can also add some new operations to our
repertory.

Exercise 9.15

Write a make-mirrored-image constructor. It should take a single image as an
argument, like make-turned-image does. The image it produces should be the
same size as the original but should be flipped around the vertical axis so that what
was on the left of the original image is on the right of the mirrored image, and vice
versa, as though the original image had been viewed in a mirror.

Exercise 9.16

Write a make-scaled-image constructor. It should take a real number and an
image as its arguments. The image it makes should be a magnified or shrunken
version of the original image, under the control of the numeric scale argument.
For example, (make-scaled-image 2 test-bb) should make an image twice a
big as test-bb, whereas (make-scaled-image 1/4 test-bb) should make one
one-quarter as big as test-bb. (Of course, you can scale other images, like c-curves,
as well.) Don’t just scale the image’s width and height; you also need to arrange for
the scaling when the image is drawn.

To get full quilt covers, we also still need a way of stacking one image on top
of another, making a new image with the combined heights. This is rather similar
to make-overlaid-image, except that the top image will need to be fooled into
drawing higher up on the drawing medium than it normally would so that its drawing
goes above that of the bottom image. This can be achieved by giving it a transformed



9.4 An Application: Computer Graphics 271

medium to draw on. It will draw on that transformed medium using y coordinates that
start at 0, but the transformed medium will translate that into drawing commands
on the base medium that have larger y coordinate values.

Exercise 9.17

Using this approach, write a make-stacked-image constructor that takes the top
and bottom images as its arguments. You should initially test out your constructor
by doing such simple evaluations as (make-stacked-image test-bb nova-bb).
Once it seems to work, you can make fancier quilt patterns as described below.

Using your make-stacked-image procedure along with our earlier make-
turned-image procedure, the pinwheel procedure can be rewritten as follows:

(define pinwheel

(lambda (image)
(let ((turned (make-turned-image image)))

(let ((half (make-turned-image (make-stacked-image turned

image))))

(make-stacked-image half

(make-turned-image

(make-turned-image half)))))))

With this in hand, you can make quilt covers by doing evaluations such as (show
(pinwheel (pinwheel nova-bb))). For large covers, you probably will want to
show scaled-down versions made using make-scaled-image.

You may be feeling a bit ripped off because so far we haven’t shown how a “real”
drawing medium can be constructed, that is, one that doesn’t just pass the buck in
some transformed way to an underlying base medium. If you look on the web site
for this book, you can find several system-dependent versions of the show procedure,
each of which constructs some particular kind of on-screen drawing medium. At this
point, we’ll take a look at constructing a drawing medium that “draws” by writing
to a file. This further highlights the benefits of generic operations. All of the image
constructors we defined above are just as good for producing a graphical file as they
are for drawing on the screen. That’s because each of them draws on an arbitrary
drawing medium, using the specified interface that all drawing media share.

The file format we’ll write is one known as Encapsulated PostScript, or EPS. It
is a popular format, which on many systems you’ll be able to preview on-screen
or include as illustrations in documents. (For example, you could write a c-curve
or quilt pattern to an EPS file and then include that EPS file in a word-processed
report. We used this technique to make illustrations for this book.) In addition to



272 Chapter 9 Generic Operations

the EPS format’s popularity and versatility, it has the advantage of being a relatively
straightforward textual format. For example, to draw a line from (0, 0) to (100, 100),
we would put the following into the EPS file:

0 0 moveto 100 100 lineto stroke

Similarly, to draw a filled triangle with vertices (0, 0), (100, 0), and (50, 100), we
would put the following line into the file:

0 0 moveto 100 0 lineto 50 100 lineto closepath fill

Although this notation is likely to be unfamiliar to you, at least it is readable, unlike
some other graphics file formats.

By using the display and newline procedures, we could write the EPS output
to your computer’s screen for you to see. That is, you’d wind up seeing a bunch of
textual descriptions of graphical objects, like the examples given above. However,
doing so would not be very useful. Instead, we’ll write the EPS output into a file
stored on your computer, ready for you to view using a previewer program or to
incorporate into a word-processed document. To write this output to a file, we’ll
use a predefined Scheme procedure called with-output-to-file. It reroutes the
output produced by procedures like display and newline so that they go into the
file instead of to your screen. For example,

(with-output-to-file "foo"
(lambda ()
(display "hello, world")
(newline)))

would create a one-line file called foo containing the message hello, world .
We’ll write a procedure called image->eps that writes an EPS version of a given

image into a file with a given filename. Just like show, this procedure will take care
of some start-up details before asking the image to draw itself. The procedure first
writes a bit of header information to the file, including the information about how
big the image is. Then, image->eps asks the image to draw itself on a specially
constructed drawing medium called eps-medium that outputs the EPS commands
for drawing the lines or filled triangles.

(define image->eps
(lambda (image filename)
(with-output-to-file filename
(lambda ()
(display "%!PS-Adobe-3.0 EPSF-3.0")



9.4 An Application: Computer Graphics 273

(newline)
(display "%%BoundingBox: 0 0 ")
;; We need to make sure the bounding box is expressed
;; using only exact integers, as required by PostScript.
;; Therefore we process the width and height of the
;; image using round and then inexact->exact. The
;; round procedure would convert 10.8 into the inexact
;; integer 11., which the inexact->exact then converts
;; to the exact integer 11
(display (inexact->exact (round (width image))))
(display " ")
(display (inexact->exact (round (height image))))
(newline)
;; Now do the drawing
(draw-on image eps-medium)))))

How does eps-medium work? It simply needs to draw lines and filled triangles in
the EPS manner illustrated earlier, which leads to the following definition:

(define eps-medium
(lambda (op)
(cond ((equal? op ’draw-line)

(lambda (point0 point1)
(display-eps-point point0)
(display "moveto")
(display-eps-point point1)
(display "lineto stroke")
(newline)))

((equal? op ’draw-filled-triangle)
(lambda (point0 point1 point2)
(display-eps-point point0)
(display "moveto")
(display-eps-point point1)
(display "lineto")
(display-eps-point point2)
(display "lineto closepath fill")
(newline)))

(else
(error "unknown operation on EPS medium"

op)))))



274 Chapter 9 Generic Operations

The display-eps-point procedure this uses simply writes out the x and y coor-
dinates in a format suitable for PostScript. In particular, PostScript can’t handle a
fraction written with a slash, such as 1 6 2. Therefore, we use the predefined proce-
dure exact->inexact to convert numbers that aren’t integers into their “inexact”
form, which gets displayed as .5 (for example) rather than 16 2. (The procedure
exact->inexact returns unchanged any number that is already inexact.)

(define display-eps-point
(lambda (point)
(define display-coord
(lambda (coord)
(if (integer? coord)

(display coord)
(display (exact->inexact coord)))))

(display " ")
(display-coord (x-coord point))
(display " ")
(display-coord (y-coord point))
(display " ")))

Exercise 9.18

Write a procedure summarize-image that takes an image as its argument and uses
display to give you a summary of that image as follows. For each line segment the
image contains, a letter l should be displayed, and for each filled triangle, a letter t.
For example, if you evaluate (summarize-image (c-curve 0 -1/2 0 1/2 3)),
you should see eight l’s because the level-3 c-curve is constituted out of eight line
segments.

Review Problems

Exercise 9.19

You are hired to supervise a team of programmers working on a computerized
geometry system. It is necessary to manipulate various geometric figures in standard
ways. As project manager, you have to select an organizational strategy that will allow
all different shapes of geometric figures to be be accessed using generic selectors for
such information as the x and y coordinates of the figure and the area.

State which strategy you have chosen and briefly justify your choice (e.g., use one
to three sentences). For your programmers’ benefit, illustrate how your choice would
be used to implement constructors make-square and make-circle and generic
selectors center-x, center-y, and area. The two constructors each take three



Review Problems 275

arguments; in both cases, the first two are the x and y coordinates of the center of
the figure. The third argument specifies the length of the side for a square and the
radius for a circle. The selectors should be able to take either a square or a circle as
their argument and return the appropriate numerical value.

Exercise 9.20

Global Amalgamations Corp. has just acquired yet another smaller company and is
busily integrating the data processing operations of the acquired company with that of
the parent corporation. Luckily, both companies are using Scheme, and both have set
up their operations to tolerate multiple representations. Unfortunately, one company
uses operation tables as type tags, and the other uses procedural representations (i.e.,
message passing). Thus, not only are multiple representations now co-existing, but
some of them are type-tagged data and others are message-passing procedures. You
have been called in as a consultant to untangle this situation.

What is the minimum that needs to be done to make the two kinds of rep-
resentation happily coexist? Illustrate your suggestion concretely using Scheme as
appropriate. You may want to know that there is a built-in predicate pair? that tests
whether its argument is a pair, and a similar one, procedure?, that tests whether its
argument is a procedure.

Exercise 9.21

One way we can represent a set is as a predicate (i.e., a procedure that returns true
or false). The idea is that to test whether a particular item is in the set, we pass it to
the procedure, which provides the answer. For example, using this representation,
the built-in procedure number? could be used to represent the (infinite) set of all
numbers.

a. Implement element-of-set? for this representation. It takes two arguments, an
element and a set, and returns true or false depending on whether the element is
in the set or not.

b. Implement add-to-set for this representation. It takes two arguments, an ele-
ment and a set, and returns a new set that contains the specified element as well
as everything the specified set contained. Hint: Remember that a set is represented
as a procedure.

c. Implement union-set for this representation. It takes two arguments—two sets—
and returns a new set that contains anything that either of the provided sets
contains.

d. Write a paragraph explaining why you think the authors included this exercise in
this chapter rather than elsewhere in the book.



276 Chapter 9 Generic Operations

Exercise 9.22

Assume that infinity has been defined as a special number that is greater than
all normal (finite) numbers and that when added to any finite number or to itself,
it yields itself. (In some Scheme systems you can define it as follows: (define
infinity (/ 1.0 0.0)).) Now there is no reason why sequences need to be of
finite length. Write a constructor for some interesting kind of infinite sequence.

Exercise 9.23

Show how the movie, book, and CD databases could be combined using message-
passing instead of type-tagging.

Chapter Inventory

Vocabulary

abstract mental model
generic operation
interface
multiple representations
message-passing
Smalltalk
object-oriented language
arithmetic sequence

commonality
class hierarchy
object-oriented programming
type tag
operation table
pixel
Encapsulated PostScript (EPS)

Abstract Data Types

date
sequence
catalog-item
tagged datum
type

table
drawing medium
image
point

New Predefined Scheme Names

with-output-to-file
pair?
procedure?

Scheme Names Defined in This Chapter

head
tail
empty-sequence?

sequence-length
sequence-from-to
sequence->list



Chapter Inventory 277

sequence-with-from-by
sequence-from-to-with
list->sequence
empty-sequence
list-of-length->sequence
sequence-ref
sequence-cons
sequence-map
sequence-append
title
year-made
display-item
creator
company
actors
tagged-datum
type
contents
list->tagged-list
tagged-movies
database
movie?
book?
cd?
family-name-last
make-type
type-name
type-operation-table
make-table
movie
operate

table-find
make-point
x-coord
y-coord
make-line
make-filled-triangle
width
height
draw-on
draw-line-on
draw-filled-triangle-on
basic-image-size
transform-point
show
make-overlaid-image
make-transformed-medium
make-turned-image
make-mirrored-image
make-scaled-image
make-stacked-image
image->eps
summarize-image
make-square
make-circle
center-x
center-y
area
element-of-set?
add-to-set
union-set


