
C H A P T E R T W O

Recursion and Induction

2.1 Recursion

We have used Scheme to write procedures that describe how certain computational
processes can be carried out. All the procedures we’ve discussed so far generate
processes of a fixed size. For example, the process generated by the procedure
square always does exactly one multiplication no matter how big or how small the
number we’re squaring is. Similarly, the procedure pinwheel generates a process
that will do exactly the same number of stack and turn operations when we use
it on a basic block as it will when we use it on a huge quilt that’s 128 basic blocks
long and 128 basic blocks wide. Furthermore, the size of the procedure (that is,
the size of the procedure’s text) is a good indicator of the size of the processes it
generates: Small procedures generate small processes and large procedures generate
large processes.

On the other hand, there are procedures of a fixed size that generate computa-
tional processes of varying sizes, depending on the values of their parameters, using
a technique called recursion. To illustrate this, the following is a small, fixed-size
procedure for making paper chains that can still make chains of arbitrary length—
it has a parameter n for the desired length. You’ll need a bunch of long, thin
strips of paper and some way of joining the ends of a strip to make a loop. You
can use tape, a stapler, or if you use slitted strips of cardstock that look like this

, you can just slip the slits together. You’ll need some
classmates, friends, or helpful strangers to do this with, all of whom have to be willing
to follow the same procedure as you. You will need to stand in a line.

22

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

2.1 Recursion 23

To make a chain of length n:

1. If n 5 1,
(a) Bend a strip around to bring the two ends together, and join them.
(b) Proudly deliver to your customer a chain of length 1.

2. Otherwise,
(a) Pick up a strip.
(b) Ask the person next in line to please make you a chain of length n 2 1.
(c) Slip your strip through one of the end links of that chain, bend it around,

and join the ends together.
(d) Proudly deliver to your customer a chain of length n.

Now you know all there is to know about recursion, you have met a bunch of
new people, and if you were ambitious enough to make a long chain, you even
have a nice decoration to drape around your room. Despite all these advantages, it
is generally preferable to program a computer rather than a person. In particular,
using this same recursive technique with a computer comes in very handy if you
have a long, tedious calculation to do that you’d rather not do by hand or even ask
your friends to do.

For example, imagine that you want to compute how many different outcomes
there are of shuffling a deck of cards. In other words, how many different orderings (or
permutations) of the 52 cards are there? Well, 52 possibilities exist for which card is on
top, and for each of those 51 possibilities exist for which card is next, or 52 351 total
possibilities for what the top two cards are. This pattern continues similarly on down
the deck, leading to a total number of possibilities of 52 3 51 3 50 3 ? ? ? 3 3 3 2 3 1,
which is the number that is conventionally called 52 factorial and written 52!. To
compute 52! we could do a lot of tedious typing, spelling out the 51 multiplications of
the numbers from 52 down to 1. Alternatively, we could write a general procedure for
computing any factorial, which uses its argument to determine which multiplications
to do, and then apply this procedure to 52.

To write this procedure, we can reuse the ideas behind the paper chain procedure.
One of these is the following very important general strategy:

The recursion strategy: Do nearly all the work first; then there will only be a
little left to do.

Although it sounds silly, it describes perfectly what happened with the paper chain:
You (or rather your friends) did most of the work first (making a chain of length
n 2 1), which left only one link for you to do.

Here we’re faced with the problem of multiplying 52 numbers together, which
will take 51 multiplications. One way to apply the recursion principle is this: Once
50 of the multiplications have been done, only 1 is left to do.

24 Chapter 2 Recursion and Induction

We have many possible choices for which 50 multiplications to do first versus
which one to save for last. Almost any choice can be made to work, but some may
make us work a bit harder than others. One choice would be to initially multiply
together the 51 largest numbers and then be left with multiplying the result by the
smallest number. Another possibility would be to initially multiply together the 51
smallest numbers, which would just leave the largest number to multiply in. Which
approach will make our life easier? Stop and think about this for a while.

We start out with the problem of multiplying together the numbers from 52
down to 1. To do this, we’re going to write a general factorial procedure, which can
multiply together the numbers from anything down to 1. Fifty-two down to 1 is just
one special case; the procedure will be equally capable of multiplying 105 down to
1, or 73 down to 1, or 51 down to 1.

This observation is important; if we make the choice to leave the largest number
as the one left to multiply in at the end, the “nearly all the work” that we need to do
first is itself a factorial problem, and so we can use the same procedure. To compute
52!, we first compute 51!, and then we multiply by 52. In general, to compute n!,
for any number n, we’ll compute (n 2 1)! and then multiply by n. Writing this in
Scheme, we get:

(define factorial
(lambda (n)
(* (factorial (- n 1))

n)))

The strategy of choosing the subproblem to be of the same form as the main
problem is probably worth having a name for:

The self-similarity strategy: Rather than breaking off some arbitrary big chunk
of a problem to do as a subproblem, break off a chunk that is of the same form
as the original.

Will this procedure for computing factorials work? No. It computes the factorial of
any number by first computing the factorial of the previous number. That works up
to a point; 52! can be computed by first computing 51!, and 51! can be computed by
first computing 50!. But, if we keep going like that, we’ll never stop. Every factorial
will be computed by first computing a smaller one. Therefore 1! will be computed
in terms of 0!, which will be computed in terms of (21)!, which will be computed
in terms of (22)!, and so on.

When we have a lot of multiplications to do, it makes sense to do all but one and
then the one that’s left. Even if we only have one multiplication to do, we could
do all but one (none) and then the one that’s left. But what if we don’t have any
multiplications at all to do? Then we can’t do all but one and then the one that’s

2.1 Recursion 25

left—there isn’t one to leave for last. The fundamental problem with this procedure
is, it tries to always leave one multiplication for last, even when there are none to be
done.

Computing 1! doesn’t require any multiplications; the answer is simply 1. What
we can do is treat this base case specially, using if, just like in the human program
for making chains:

(define factorial
(lambda (n)
(if (= n 1)

1
(* (factorial (- n 1))

n))))

(factorial 52)
80658175170943878571660636856403766975289505440883277824000000000

000

Thus, base cases are treated separately in recursive procedures. In particular, they
result in no further recursive calls. But we also need to guarantee that the recursion
will always eventually end in a base case. This is so important that we give it the
following name:

The base case imperative: In a recursive procedure, all roads must lead to a
base case.

This procedure generates what is called a recursive process; a similar but smaller
computation is done as a subgoal of solving the main problem. In particular, cases
like this with a single subproblem that is smaller by a fixed amount, are called linear
recursions because the total number of computational steps is a linear function of the
problem size. We can see the recursive nature of the process clearly in Figure 2.1,
which shows how the evaluation of (factorial 3) involves as a subproblem com-
puting (factorial 2), which in turn involves computing (factorial 1) as a
sub-subproblem. If the original problem had been (factorial 52), the diagram
would be 52 columns wide instead of only 3.

This diagram isn’t complete—the evaluation of the if expression with its equality
test isn’t explicitly shown and neither is the subtraction of one. These omissions were
made to simplify the diagram, leaving the essential information more apparent. If we
included all the details, the first three steps (leading from the problem (factorial
3) to the subproblem (factorial 2)) would expand into the ten steps shown in
Figure 2.2.

26 Chapter 2 Recursion and Induction

(* 1 2)

(* 2 3)

(* (factorial 2) 3)

(* (factorial 1) 2)

(factorial 3)

(factorial 2)

(factorial 1)

1

2

6

Problem Subproblem Sub-subproblem

Figure 2.1 The recursive process of evaluating (factorial 3).

Although the recursive nature of the process is most evident in the original
diagram, we can as usual save space by instead listing the evaluation steps. If we do
this with the same details omitted, we get

(factorial 3)
(* (factorial 2) 3)
(* (* (factorial 1) 2) 3)
(* (* 1 2) 3)
(* 2 3)
6

2.1 Recursion 27

(if (= 3 1)
 1
 (* (factorial (- 3 1))
 3))

(if #f
 1
 (* (factorial (- 3 1))
 3))

(* (factorial (- 3 1))
 3)

(factorial (- 3 1))

(factorial 2)

(factorial 3)

(= 3 1)

Problem Subproblem Sub-subproblem

#f

(- 3 1)

2

Figure 2.2 Details of the recursive process of evaluating (factorial 3).

Let’s sum up what we’ve done in both the paper chain example and the factorial
example. In both, we had to solve a problem by doing something repeatedly, either
assembling links or multiplying numbers. We broke off a big chunk of each problem
(the recursion principle) that was just like the original problem (the self-similarity
principle) except that it was smaller. After that chunk was finished, we only had a
little work left to do, either by putting in one more link or multiplying by one more

28 Chapter 2 Recursion and Induction

Exponents

In this book, when we use an exponent, such as the k in xk, it will almost always
be either a positive integer or zero. When k is a positive integer, xk just means
k copies of x multiplied together. That is, xk 5 x 3 x 3 ? ? ? 3 x, with k of the
x’s. What about when the exponent is zero? We could equally well have said that
xk 5 1 3 x 3 x 3 ? ? ? 3 x with k of the x’s. For example, x3 5 1 3 x 3 x 3 x,
x2 5 1 3 x 3 x, and x1 5 1 3 x. If we continue this progression with one fewer x,
we see that x0 5 1.

number. In each case, the smaller subproblems must invariably lead to a problem
so small that it could be made no smaller (the base case imperative), that is, when
we needed to make a chain of length 1 or when we had to compute 1!, which is
handled separately.

Exercise 2.1

Write a procedure called power such that (power base exponent) raises base to the
exponent power, where exponent is a nonnegative integer. As explained in the sidebar
on exponents, you can do this by multiplying together exponent copies of base. (You
can compare results with Scheme’s built-in procedure called expt. However, do not
use expt in power. Expt computes the same values as power, except that it also
works for exponents that are negative or not integers.)

2.2 Induction

Do you believe us that the factorial procedure really computes factorials? Proba-
bly. That’s because once we explained the reasoning behind it, there isn’t much to
it. (Of course, you may also have tried it out on a Scheme system—but that doesn’t
explain why you believe it works in the cases you didn’t try.)

Sometimes, however, it is a bit trickier to convince someone that a procedure
generates the right answer. For example, here’s another procedure for squaring a
number that is rather different from the first one:

(define square
(lambda (n)
(if (= n 0)

0
(+ (square (- n 1))

(- (+ n n) 1)))))

2.2 Induction 29

Just because it is called square doesn’t necessarily mean that it actually squares
its argument; we might be trying to trick you. After all, we can give any name we
want to anything. Why should you believe us? The answer is: You shouldn’t, yet,
because we haven’t explained our reasoning to you. It is not your job as the reader of
a procedure to figure it out; it is the job of the writer of a procedure to accompany
it with adequate explanation. Right now, that means that we have our work cut out
for us. But it also means that when it becomes your turn to write procedures, you
are going to have to similarly justify your reasoning.

Earlier we said that the procedure was “for squaring a number.” Now that we’re
trying to back up that claim, we discover we need to be a bit more precise: This
procedure squares any nonnegative integer. Certainly it correctly squares 0, because
it immediately yields 0 as the answer in that case, and 02 5 0. The real issue is with
the positive integers.

We’re assuming that - subtracts and + adds, so (- n 1) evaluates to n 2 1, and
(- (+ n n) 1) evaluates to (n 1 n) 2 1 or 2n 2 1. What if we went one step
further and assumed that where square is applied to n 2 1, it squares it, resulting
in the value (n 2 1)2? In that case, the overall value computed by the procedure is
(n21)2 12n21. With a little bit of algebra, we can show that (n21)2 12n21 5 n2,
and so in fact the end result is n2, just like we said it was.

But wait, not so fast: To show that square actually squares n, we had to assume
that it actually squares n 2 1; we seem to need to know that the procedure works
in order to show that it works. This apparently circular reasoning isn’t, however,
truly circular: it is more like a spiral. To show that square correctly squares some
particular positive integer, we need to assume that it correctly squares some smaller
particular integer. For example, to show that it squares 10, we need to assume that
it can square 9. If we wanted to, though, we could show that it correctly squares
9, based on the assumption that it correctly squares 8. Where does this chain of
reasoning end? It ends when we show that (square 1) really computes 12, based
on the fact that (square 0) really computes 02. At that point, the spiraling stops,
because we’ve known since the very beginning that square could square 0.

The key point that makes this spiral reasoning work is that the chain of reasoning
leads inexorably down to the base case of zero. We only defined square in terms
of smaller squares, so there is a steady progression toward the base case. By contrast,
even though it is equally true that n2 5 (n 1 1)2 2 (2n 1 1), the following procedure
does not correctly compute the square of any positive integer:

(define square ; This version doesn’t work.
(lambda (n)
(if (= n 0)

0
(- (square (+ n 1))

(+ (+ n n) 1)))))

30 Chapter 2 Recursion and Induction

The reason why this procedure doesn’t correctly compute the square of any positive
integer isn’t that it computes some incorrect answer instead. Rather, it computes
no answer at all, because it works its way further and further from the base case,
stopping only when the computer runs out of memory and reports failure. We say
that the computational process doesn’t terminate.

We’ve also used this procedure to introduce another feature of the Scheme pro-
gramming language: comments. Any text from a semicolon to the end of the line is
ignored by the Scheme system and instead is for use by human readers.

The reasoning technique we’ve been using is so generally useful that it has a name:
mathematical induction. Some standard terminology is also used to make arguments
of this form more brief. The justification that the base case of the procedure works is
called the base case of the proof. The assumption that the procedure works correctly
for smaller argument values is called the induction hypothesis. The reasoning that
leads from the induction hypothesis to the conclusion of correct operation is called
the inductive step. Note that the inductive step only applies to those cases where the
base case doesn’t apply. For square, we only reasoned from n 2 1 to n in the case
where n was positive, not in the case where it was zero.

Putting this all together, we can write an inductive proof of square’s correctness
in a reasonably conventional format:

Base case: (square 0) terminates with the value 0 because of the evaluation
rule for if. Because 0 5 02, (square 0) computes the correct value.

Induction hypothesis: Assume that (square k) terminates with the value k2 for
all k in the range 0 # k , n.

Inductive step: Consider evaluating (square n), with n . 0. This will ter-
minate if the evaluation of (square (- n 1)) does and will have the same
value as (+ (square (- n 1)) (- (+ n n) 1)). Because (- n 1) evaluates
to n 2 1 and 0 # n 2 1 , n, we can therefore assume by our induction hypoth-
esis that (square (- n 1)) does terminate, with the value (n 2 1)2. Therefore
(+ (square (- n 1)) (- (+ n n) 1)) evaluates to (n 2 1)2 1 2n 2 1. Be-
cause (n 2 1)2 1 2n 2 1 5 n2, we see that (square n) does terminate with the
correct value for any arbitrary positive n, under the inductive hypothesis of correct
operation for smaller arguments.

Conclusion: Therefore, by mathematical induction on n, (square n) termi-
nates with the value n2 for any nonnegative integer n.

If you have trouble understanding this, one useful trick is to think of proving one
special case of the theorem each day. The first day you prove the base case. On any
subsequent day, you prove the next case, making use only of results you’ve previously
proven. There is no particular case that you won’t eventually show to be true—so
the theorem must hold in general.

2.2 Induction 31

We wish to point out two things about this proof. First, the proof is relative
in the sense that it assumes that other operations (such as + and -) operate as
advertised. But this is an assumption you must make, because you were not there
when the people who implemented your Scheme system were doing their work.
Second, an important part of verifying that a procedure computes the correct value
is showing that it actually terminates for all permissible argument values. After all, if
the computation doesn’t terminate, it computes no value at all and hence certainly
doesn’t compute the correct value. This need for termination explains our enjoinder
in the base case imperative given earlier.

Exercise 2.2

Write a similarly detailed proof of the factorial procedure’s correctness. What are
the permissible argument values for which you should show that it works?

Proving is also useful when you are trying to debug a procedure that doesn’t work
correctly, that is, when you are trying to figure out what is wrong and how to fix it.
For example, look at the incorrect version of square given earlier. If we were trying
to prove that this works by induction, the base case and the inductive hypothesis
would be exactly the same as in the proof above. But look at what happens in the
inductive step:

Inductive step: Consider evaluating (square n), with n . 0. This will termi-
nate if the evaluation of (square (+ n 1)) does and will have the same value as
(- (square (+ n 1)) (+ (+ n n) 1)). Because (+ n 1) evaluates to n 1 1
and 0 # n 1 1 , n . . . Oops . . .

The next time you have a procedure that doesn’t work, try proving that it does
work. See where you run into trouble constructing the proof—that should point you
toward the bug (error) in the procedure.

Exercise 2.3

Here’s an example of a procedure with a tricky bug you can find by trying to do
an induction proof. Try to prove the following procedure also computes n2 for any
nonnegative integer n. Where does the proof run into trouble? What’s the bug?

(define square ; another version that doesn’t work
(lambda (n)
(if (= n 0)

0
(+ (square (- n 2))

(- (* 4 n) 4)))))

32 Chapter 2 Recursion and Induction

The most important thing to take away from this encounter with induction is a
new way of thinking, which we can call one-layer thinking. To illustrate what we
mean by this, contrast two ways of thinking about what the square procedure does
in computing 42:

1. You can try thinking about all the layers upon layers of squares, with requests
going down through the layers and results coming back up. On the way down,
42 requests 32 requests 22 requests 12 requests 02. On the way back up, 0 gets
1 1 1 2 1 added to it yielding 1, which gets 2 1 2 2 1 added to it yielding 4, which
gets 3 1 3 2 1 added to it yielding 9, which gets 4 1 4 2 1 added to it yielding
16, which is the answer.

2. Alternatively, you can just stick with one layer. The computation of 42 requests 32

and presumably gets back 9, because that’s what 32 is. The 9 then gets 4 1 4 2 1
(or 7) added to it, yielding the answer 16.

This is really just an informal version of relying on an induction hypothesis—that’s
what we were doing when we said “. . . and presumably gets back 9, because that’s
what 32 is.” It saves us having to worry about how the whole rest of the computation
is done.

One-layer thinking is much better suited to the limited capacities of human brains.
You only have to think about a little bit of the process, instead of the entire arbitrarily
large process that you’ve really got. Plunging down through a whole bunch of layers
and then trying to find your way back up through them is a good way to get hopelessly
confused. We sum this up as follows:

The one-layer thinking maxim: Don’t try to think recursively about a recursive
process.

One-layer thinking is more than just a way to think about the process a procedure
will generate; it is also the key to writing the procedure in the first place. For example,
when we presented our recursive version of square at the beginning of this section,
you may well have wondered where we got such a strange procedure. The answer is
that we started with the idea of computing squares recursively, using smaller squares.
We knew we would need to have a base case, which would probably be when n 5 0.
We also knew that we had to relate the square of n to the square of some smaller
number. This led to the following template:

(define square
(lambda (n)
(if (= n 0)

0
((square)

))))

2.2 Induction 33

We knew that the argument to square would have to be less than n for the induction
hypothesis to apply; on the other hand, it would still need to be a nonnegative integer.
The simplest way to arrange this is to use (- n 1); thus we have

(define square
(lambda (n)
(if (= n 0)

0
((square (- n 1))

))))

At this point, our one-layer thinking tells us not to worry about the specific computa-
tional process involved in evaluating (square (- n 1)). Instead, we assume that
the value will be (n 2 1)2. Thus the only remaining question is, What do we need
to do to (n 2 1)2 to get n2? Because (n 2 1)2 5 n2 2 2n 1 1, it becomes clear that
we need to add 2n 2 1. This lets us fill in the remaining two blanks, arriving at our
procedure:

(define square
(lambda (n)
(if (= n 0)

0
(+ (square (- n 1))

(- (+ n n) 1)))))

Exercise 2.4

Use one-layer thinking to help you correctly fill in the blanks in the following version
of square so that it can square any nonnegative integer:

(define square
(lambda (n)
(if (= n 0)

0
(if (even? n)

((square (/ n 2))
)

(+ (square (- n 1))
(- (+ n n) 1))))))

34 Chapter 2 Recursion and Induction

2.3 Further Examples

Recursion adds great power to Scheme, and the recursion strategy will be funda-
mental to the remainder of the book. However, if this is your first encounter with
recursion, you may find it confusing. Part of the confusion arises from the fact that
recursion seems “circular.” However, it really involves spiraling down to a firm foun-
dation at the base case (or base cases). Another problem at this point is simply lack
of familiarity. Therefore, we devote this section to various examples of numerical
procedures involving recursion. And the next section applies recursion to quilting.

As our first example, consider the built-in Scheme procedure quotient, which
computes how many times one integer divides another integer. For example,

(quotient 9 3)
3

(quotient 10 3)
3

(quotient 11 3)
3

(quotient 12 3)
4

Even though quotient is built into Scheme, it is instructive to see how it can
be written in terms of a more “elementary” procedure, in this case subtraction.
We’ll write a procedure that does the same job as quotient, but we’ll call it quot
instead so that the built-in quotient will still be available. (Nothing stops you from
redefining quotient, but then you lose the original until you restart Scheme.) In
order to simplify the discussion, suppose we want to compute (quot n d), where
n $ 0 and d . 0. If n , d, d doesn’t divide n at all, so the result would be 0. If,
however, n $ d, d will divide n one more time than it divides n 2 d. Writing this in
Scheme, we have

(define quot
(lambda (n d)
(if (< n d)

0
(+ 1 (quot (- n d) d)))))

The built-in version of quotient, unlike the quot procedure just shown, allows
either or both of the arguments to be negative. The value when one or both argu-
ments are negative is defined by saying that negating either argument negates the
quotient. For example, because the quotient of 13 and 3 is 4, it follows that the

2.3 Further Examples 35

quotient of 213 and 3 is 24, and so is the quotient of 13 and 23. Because negating
either argument negates the quotient, negating both of them negates the quotient
twice, or in other words leaves it unchanged. For example, the quotient of 213 and
23 is 4.

In order to negate a number in Scheme, we could subtract it from zero; for ex-
ample, to negate the value of n, we could write (- 0 n). However, it is more
idiomatic to instead write (- n), taking advantage of a special feature of the prede-
fined procedure named -, namely, that it performs negation if only given a single
argument. Note that (- n) is quite different in form from -5: The former applies a
procedure to an argument, whereas the latter is a single number. It is permissible to
apply the procedure named - to a number, as in (- 5), but you can’t put a negative
sign on a name the way you would on a number: -n isn’t legal Scheme.

We could build these ideas into our procedure as follows:

(define quot
(lambda (n d)
(if (< d 0)

(- (quot n (- d)))
(if (< n 0)

(- (quot (- n) d))
(if (< n d)

0
(+ 1 (quot (- n d) d)))))))

Notice that our first version of quot corresponds to the innermost if; the outer two
if’s deal with negative values for n and d.

This new, more general, quot procedure is our first example of a procedure with
ifs nested within one another so deeply that they jeopardize the readability of the
procedure. Procedures like this can be clarified by using another form of conditional
expression that Scheme offers as an alternative to if: cond. Here is how we can
rewrite quot using cond:

(define quot
(lambda (n d)
(cond ((< d 0) (- (quot n (- d))))

((< n 0) (- (quot (- n) d)))
((< n d) 0)
(else (+ 1 (quot (- n d) d))))))

A cond consists of a sequence of parenthesized clauses, each providing one possible
case for how the value might be calculated. Each clause starts with a test expression,
except that the last clause can start with the keyword else. Scheme evaluates each

36 Chapter 2 Recursion and Induction

test expression in turn until it finds one that evaluates to true, to decide which
clause to use. Once a test evaluates to true, the remainder of that clause is evaluated
to produce the value of the cond expression; the other clauses are ignored. If the
else clause is reached without any true test having been found, the else clause’s
expression is evaluated. If, on the other hand, no test evaluates to true and there is
no else clause, the result is not specified by the Scheme language standard, and
each system is free to give you whatever result it pleases.

Exercise 2.5

Use addition to write a procedure multiply that calculates the product of two
integers (i.e., write * for integers in terms of +).

Suppose we want to write a procedure that computes the sum of the first n integers,
where n is itself a positive integer. This is a very similar problem to factorial; the
difference is that we are adding up the numbers rather than multiplying them.
Because the base case n 5 1 should yield the value 1, we come up with a solution
identical in form to factorial:

(define sum-of-first
(lambda (n)
(if (= n 1)

1
(+ (sum-of-first (- n 1))

n))))

But why should n 5 1 be the base case for sum-of-first? In fact, we could
argue that the case n 5 0 makes good sense: The sum of the first 0 integers is the
“empty sum,” which could reasonably be interpreted as 0. With this interpretation,
we can extend the allowable argument values as follows:

(define sum-of-first
(lambda (n)
(if (= n 0)

0
(+ (sum-of-first (- n 1))

n))))

This extension is reasonable because it computes the same values as the original
version whenever n $ 1. (Why?) A similar extension for factorial would be

2.3 Further Examples 37

(define factorial
(lambda (n)
(if (= n 0)

1
(* (factorial (- n 1))

n))))

It is not as clear that the “empty product” should be 1; however, we’ve seen empty
products when we talked about exponents (see the sidebar, Exponents). The product
of zero copies of x multiplied together is 1; similarly the product of the first zero
positive integers is also 1. Not coincidentally, this agrees with the mathematical
convention that 0! 5 1.

Exercise 2.6

Let’s consider some variants of the basic form common to factorial and
sum-of-first.

a. Describe precisely what the following procedure computes in terms of n:

(define subtract-the-first
(lambda (n)
(if (= n 0)

0
(- (subtract-the-first (- n 1))

n))))

b. Consider what happens when you exchange the order of multiplication in
factorial:

(define factorial2
(lambda (n)
(if (= n 0)

1
(* n

(factorial2 (- n 1))))))

Experimentation with various values of n should persuade you that this version
computes the same value as did the original factorial. Why is this so? Would
the same be true if you switched the order of addition in sum-of-first?

38 Chapter 2 Recursion and Induction

c. If you reverse the order of subtraction in subtract-the-first, you will get a
different value in general. Why is this so? How would you precisely describe the
value returned by this new version?

One way to generalize sum-of-first is to sum up the integers between two
specified integers (e.g., from 4 to 9). This would require two parameters and could
be written as follows:

(define sum-integers-from-to
(lambda (low high)
(if (> low high)

0
(+ (sum-integers-from-to low (- high 1))

high))))

Note that this could also be accomplished by increasing low instead of decreasing
high.

Exercise 2.7

Rewrite sum-integers-from-to in this alternative way.

Exercise 2.8

Another type of generalization of sum-of-first can be obtained by varying what
is being summed, rather than just the range of summation:

a. Write a procedure sum-of-squares that computes the sum of the first n squares,
where n is a nonnegative integer.

b. Write a procedure sum-of-cubes that computes the sum of the first n cubes,
where n is a nonnegative integer.

c. Write a procedure sum-of-powers that has two parameters n and p, both non-
negative integers, such that (sum-of-powers n p) computes 1p 12p 1? ? ?1np.

In the factorial procedure, the argument decreases by 1 at each step. Sometimes,
however, the argument needs to decrease in some other fashion. Consider, for
example, the problem of finding the number of digits in the usual decimal way of
writing an integer. How would we compute the number of digits in n, where n is
a nonnegative integer? If n , 10, the problem is easy; the number of digits would
be 1. On the other hand, if n $ 10, the quotient when it is divided by 10 will be all

2.3 Further Examples 39

but the last digit. For example, the quotient when 1234 is divided by 10 is 123. This
lets us define the number of digits in n in terms of the number of digits in a smaller
number, namely, (quotient n 10). Putting this together, we have

(define num-digits
(lambda (n)
(if (< n 10)

1
(+ 1 (num-digits (quotient n 10))))))

We could extend num-digits to negative integers using cond:

(define num-digits
(lambda (n)
(cond ((< n 0) (num-digits (- n)))

((< n 10) 1)
(else (+ 1 (num-digits (quotient n 10)))))))

If we want to do more with the digits than count how many there are, we need to
find out what each digit is. We can do this using the remainder from the division by
10; for example, when we divide 1234 by 10, the remainder is 4. A built-in proce-
dure called remainder finds the remainder; for example, (remainder 1234 10)
evaluates to 4.

Exercise 2.9

Write a procedure that computes the number of 6s in the decimal representation of
an integer. Generalize this to a procedure that computes the number of d’s, where
d is another argument.

Exercise 2.10

Write a procedure that calculates the number of odd digits in an integer. (Reminder:
There is a built-in predicate called odd?.)

Exercise 2.11

Write a procedure that computes the sum of the digits in an integer.

40 Chapter 2 Recursion and Induction

Exercise 2.12

Any positive integer i can be expressed as i 5 2nk, where k is odd, that is, as a
power of 2 times an odd number. We call n the exponent of 2 in i. For example, the
exponent of 2 in 40 is 3 (because 40 5 235) whereas the exponent of 2 in 42 is 1. If
i itself is odd, then n is zero. If, on the other hand, i is even, that means it can be
divided by 2. Write a procedure for finding the exponent of 2 in its argument.

2.4 An Application: Custom-Sized Quilts

At the end of the previous chapter we made some quilts by pinwheeling basic blocks.
The only problem is that the quilts only come in certain sizes: You could make a
single cross by pinwheeling rcross-bb, or a quilt that is two crosses wide and high
by pinwheeling the cross, or four wide and high by pinwheeling that, or But we
want a quilt that is four crosses wide and three high. We’re not being stubborn; we
have a paying customer whose bed isn’t square. In fact, given that there are lots of
different sizes of beds in the world, it would probably be best if we wrote a general
purpose procedure that could make a quilt any number of crosses wide and any
number high. We know how to make a cross; the challenge is how to replicate an
image a desired number of times.

Exercise 2.13

We can often simplify a problem by first considering a one-dimensional version of
it. Here, this means we should look at the problem of stacking a specified number
of copies of an image one on top of another in a vertical column. Write a procedure
stack-copies-of so that, for example, (stack-copies-of 5 rcross-bb) pro-
duces a tall, thin stack of five basic blocks. By the way, the name stack-copies-of
illustrates a useful trick for remembering the order of the arguments. We chose the
name so that it effectively has blanks in it for the arguments to fill in: “stack
copies of .”

Exercise 2.14

Use your stack-copies-of from the previous exercise to define a procedure called
quilt so that (quilt (pinwheel rcross-bb) 4 3) makes our desired quilt. In
general, (quilt image w h) should make a quilt that is w images wide and h
images high. Try this out.

Some quilts have more subtle patterns, such as checkerboard-style alternation of
light and dark regions. Consider, for example, the Blowing in the Wind pattern,

2.4 An Application: Custom-Sized Quilts 41

Figure 2.3 The Blowing in the Wind quilt pattern.

shown in Figure 2.3. This is again made out of pinwheels of a basic block; the basic
block, which we’ve defined as bitw-bb, is

and the result of pinwheeling it is

.

42 Chapter 2 Recursion and Induction

Five copies of this pinwheel appear as the white-on-black regions in the corners and
the center of the quilt. The four black-on-white regions of the quilt are occupied by
a black/white reversal of the pinwheel, namely,

.

This “inverted” version of the pinwheel can be produced using the primitive proce-
dure invert as follows: (invert (pinwheel bitw-bb)).

The trick is to make a checkerboard out of alternating copies of (pinwheel
bitw-bb) and (invert (pinwheel bitw-bb)). We can approach this in many
different ways, because so many algebraic identities are satisfied by invert, stack,
and quarter-turn-right. For example, inverting an inverted image gives you the
original image back, and inversion “distributes” over stacking (inverting a stack gives
the same result as stacking the inverses).

Before you write a procedure for alternating inverted and noninverted copies
of an image, you should pin down exactly what alternating means. For example,
you might specify that the image in the lower left corner is noninverted and that
the images within each row and column alternate. Or, you could specify that the
alternation begins with a noninverted image in the upper left, the upper right, or the
lower right. For a three-by-three checkerboard such as is shown here, all of these are
equivalent; only if the width or height is even will it make a difference. Nonetheless,
it is important before you begin to program to be sure you know which version you
are programming.

Exercise 2.15

One way or another, develop a procedure checkerboard for producing ar-
bitrarily sized checker-boarded quilts of images. Making a call of the form
(checkerboard (pin-wheel bitw-bb) 3 3) should result in the Blowing in the
Wind pattern of Figure 2.3. The checkerboard procedure also produces an interest-
ing “boxed crosses” pattern if you pinwheel rcross-bb instead of bitw-bb (check
it out), although we hadn’t intended it for that purpose, and it can be used with a
black (or white) image to make a regular checkerboard. You might be interested to
try it on some of your own basic blocks as well.

Review Problems 43

Review Problems

Exercise 2.16

Consider the following procedure foo:

(define foo
(lambda (x n)
(if (= n 0)

1
(+ (expt x n) (foo x (- n 1))))))

Use induction to prove that (foo x n) terminates with the value

xn11 2 1
x 2 1

for all values of x Þ 1 and for all integers n $ 0. You may assume that expt works
correctly, (i.e., (expt b m) returns bm). Hint: The inductive step will involve some
algebra.

Exercise 2.17

Perhaps you have heard the following Christmas song:

On the first day of Christmas
My true love gave to me
A partridge in a pear tree.

On the second day of Christmas
My true love gave to me
Two turtle doves
And a partridge in a pear tree.

On the third day of Christmas
My true love gave to me
Three French hens,
Two turtle doves,
And a partridge in a pear tree.

And so on, through the twelfth day of Christmas. Note that on the first day, my
true love gave me one present, on the second day three presents, on the third day
six presents, and so on. The following procedure determines how many presents I
received from my true love on the nth day of Christmas:

44 Chapter 2 Recursion and Induction

(define presents-on-day
(lambda (n)
(if (= n 1)

1
(+ n (presents-on-day (- n 1))))))

How many presents did I receive total over the 12 days of Christmas? This can
be generalized by asking how many presents I received in total over the first n
days. Write a procedure called presents-through-day (which may naturally use
presents-on-day) that computes this as a function of n. Thus, (presents-
through-day 1) should return 1, (presents-through-day 2) should return
1 1 3 5 4, (presents-through-day 3) should return 1 1 3 1 6 5 10, etc.

Exercise 2.18

Prove by induction that for every nonnegative integer n the following procedure
computes 2n:

(define f
(lambda (n)
(if (= n 0)

0
(+ 2 (f (- n 1))))))

Exercise 2.19

Prove that for all nonnegative integers n the following procedure computes the value
2(2n):

(define foo
(lambda (n)
(if (= n 0)

2
(expt (foo (- n 1)) 2))))

Hint: You will need to use certain laws of exponents, in particular that (2a)b 5 2ab

and 2a2b 5 2a1b.

Exercise 2.20

Prove that the following procedure computes n6 (n11) for any nonnegative integer n.
That is, (f n) computes n6 (n 1 1) for any integer n $ 0.

Review Problems 45

(define f
(lambda (n)
(if (= n 0)

0
(+ (f (- n 1))

(/ 1 (* n (+ n 1)))))))

Exercise 2.21

a. Appendix A describes the predefined procedure stack by saying (among other
things) that (stack image1 image2) produces an image, the height of which is
the sum of the heights of image1 and image2. How would you describe the height
of the image that is the value of (stack-on-itself image), given the following
definition of stack-on-itself?

(define stack-on-itself
(lambda (image)
(stack image image)))

b. Use induction to prove that given the definition in part a and the following
definition of f, the value of (f image n) is an image 2n times as high as image,
provided n is a nonnegative integer.

(define f
(lambda (image n)
(if (= n 0)

image
(stack-on-itself (f image (- n 1))))))

Exercise 2.22

Consider the following procedure:

(define foo
(lambda (n)
(if (= n 0)

0
(+ (foo (- n 1))

(/ 1 (- (* 4 (square n)) 1))))))

46 Chapter 2 Recursion and Induction

a. What is the value of (foo 1)? Of (foo 2)? Of (foo 3)?
b. Prove by induction that for every nonnegative integer n, (foo n) computes

n6 (2n 1 1).

Exercise 2.23

Suppose we have made images for each of the digits 0–9, which we name zero-bb,
one-bb, . . . , nine-bb. For example, if you evaluate five-bb, you get the following
image:

a. Write a procedure image-of-digit that takes a single parameter d that is an
integer satisfying 0 # d # 9 and returns the image corresponding to d. You
should definitely use a cond, because you would otherwise have to nest the ifs
ridiculously deep.

b. Using the procedure image-of-digit, write another procedure image-of-
number that takes a single parameter n that is a nonnegative integer and returns
the image corresponding to it. Thus, (image-of-number 143) would return the
following image:

Hint: Use the Scheme procedures quotient and remainder to break n apart.
Also, you may use the procedure side-by-side from Exercise 1.9b without
redefining it here.

Chapter Inventory

Vocabulary

recursion
permutations
factorial
base case (of a procedure)

recursive process
linear recursion
mathematical induction
base case (of a proof)

Notes 47

induction hypothesis
inductive step
termination

debug
bug
one-layer thinking

Slogans

The recursion strategy
The self-similarity strategy

The base case imperative
One-layer thinking maxim

New Predefined Scheme Names

The dagger symbol (†) indicates a name that is not part of the R4RS standard for
Scheme.

expt
quotient

remainder
invert†

New Scheme Syntax

comments
cond

clauses (of a cond)
else

Scheme Names Defined in This Chapter

factorial
power
square
quot
multiply
sum-of-first
subtract-the-first
factorial2
sum-integers-from-to
sum-of-squares
sum-of-cubes

sum-of-powers
num-digits
stack-copies-of
quilt
bitw-bb
checkerboard
presents-on-day
presents-through-day
image-of-digit
image-of-number

Sidebars

Exponents

Notes

The Blowing in the Wind pattern is by Rose [43]. The image of mathematical induc-
tion in terms of successive days is used very powerfully by Knuth in his fascinating
“mathematical novelette” Surreal Numbers [32].

