
C H A P T E R F O U R T EE N

Object-oriented Programming

14.1 Introduction

In this chapter we will primarily be concerned with mixing together two ideas we’ve
already presented: generic operations (from Chapter 9) and object-based abstractions
(from Chapter 13). This combination, in which abstract data types with state can
have diverse implementations that are operated on through a uniform interface, is
the core of the cluster of ideas known as object-oriented programming.

Although there is general agreement on these two core concepts, and although
there is considerable enthusiasm for object-oriented programming, there is no general
consensus on the remainder of the ideas in the cluster—which are essential or
inessential, central or peripheral. Nonetheless, we’ll cover a few of the more common
“extras.” The most significant is that rather than clearly distinguishing abstract data
types from their implementation, the two are fused together into a single notion
of a class and organized into a single class hierarchy in which the hierarchichal
class relationship can represent the sharing of interface between abstract types, the
provision of an abstract type’s interface by a concrete implementation, or even the
sharing of common portions of concrete implementations.

Rather than go into further detail here about object-oriented programming, we’ll
do so in the next section in the context of a specific example application program.
After that, we’ll explore some extensions and variations in a separate section and
then peek behind the scenes to see how the object-oriented programming system we

486

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

14.2 An Object-oriented Program 487

presume in the earlier sections can be efficiently implemented. Finally, we’ll give
you a chance to apply the object-oriented programming techniques imaginatively by
building your own world in an adventure game.

14.2 An Object-oriented Program

To illustrate object-oriented programming, we’ll look at a program for an on-line
clothing catalog company. Ideally, users (or customers) would browse through pic-
tures of the various items of clothing, selecting those they wanted. To keep things
simple, we’ll initially only offer oxford-cloth shirts and chino pants. As the customers
browse, they fill in an order form, which is essentially a list of items. They do this
by adding items to the list and inputting the specifics of those items, such as size
and color. Customers can also, at any time, decide to see what’s on their list, get the
total price of all their items, delete an item from the list, or revise the specifics of an
item on their list. When they are finished, if our system were real, they would pay
for their order and, in due time, the items would be sent to them.

To illustrate the ideas of object-oriented programming, our program will concen-
trate on the items of clothing and on the order form, or list. Because our emphasis
is not on the user interface, we’ll stick with a style of interaction that is simple to
program but not likely to win many customers. Similarly, in place of payment and
shipping, we’ll simply provide a mechanism for exiting the program.

We can use the preceding description to get started on an object-oriented design.
First, we can look through this description for important nouns; these serve as clues
regarding what classes of objects we’ll need. These nouns are items of clothing
and a list of items. Thus, we will tentatively assume that we have a class called
item and a class called item-list. We also mentioned two specific kinds of items of
clothing, which suggests having oxford-shirt and chinos classes. There are some other
nouns that are less clear-cut. For example, the description mentions “prices,” both
for individual items and for the total. Should there be a class for prices, or should
they simply be numbers? There is no one right answer to this question. For now,
we’ll use numbers for the prices. However, if there are a variety of interesting things
to do with prices, we might want to reconsider this decision.

The next thing we need to do is identify the operations that we’ll need to perform
on objects of each class. Again, we can get some guidance from our description of
the program by looking carefully both at what is explicitly said (for example, that
items can be deleted from the list) and what is implicit (for example, to calculate
a total price, it must be possible to find the price of each item). This combination
will give us an initial list of operations. As we look in more detail at how each
operation can be implemented, and as we give more careful consideration to how
the operations are used to produce the overall user-visible behavior of the program,
we may come up with some additions to our “wish lists.”

488 Chapter 14 Object-oriented Programming

Let’s start by considering the item-list class. What do we need to be able to do to
an item-list? The following operations come from the program’s description; in each
case we’ve italicized one or more words to serve as the name of the operation:

Add a specified item to the list
Display the list for the user
Find the total price of the items on the list
Delete a specified item from the list
Allow the user to choose an item from the list (to delete or revise)

Once we started to program with these operations, we’d quickly discover we had a
problem if the user decides to choose an item from an empty item list. The best way
to handle this is to not even present choosing as an option when the list is empty;
for the program to do that, it needs to be able to tell if the list is empty. Thus we are
forced to add an empty? predicate to our catalog of operations.

The item class is somewhat simpler; the operations that appear (at least implicitly)
in the program’s description are as follows:

Allow the user to input specifics (such as size and color) for an item
Display the description and price of an item to the user
Allow the user to revise specifics (such as size and color) for an item
Find the price of the item

In the introduction to the chapter we indicated that one of the principal ideas
in object-oriented programming is the use of generic operations to allow a uniform
interface to diverse implementations of an abstract data type. How does this idea
fit into shopping for clothing? The key observation is that although the two kinds
of clothing in our catalog (oxford-cloth shirts and chinos) have some properties in
common, there are considerable differences between them. For example, if you
called a catalog company and asked for the price of any item, you would get an
answer, but if you ordered a pair of chinos with a sleeve length of 32, the operator
would be pretty puzzled. In our program, we’ll use subclasses of the item class to
represent different kinds of clothing. For example, the oxford-shirt class will be a
subclass of the item class. Any oxford-cloth shirt is an item of clothing, or, in object-
oriented jargon, an object that is an instance of the oxford-shirt class is also implicitly
an instance of the item class. That way the oxford-shirt object will support all the
operations of the item class, such as finding its price. However, because it is not
simply an instance of the item class, but also of the oxford-shirt subclass, it can
support additional operations, such as finding the sleeve length, as well.

Now that we have a rough idea of what classes we’ll need, let’s take a look at
some common object-oriented jargon. We start with the word class. When we speak
generally of items of clothing, we’re really talking about the abstract idea of such

14.2 An Object-oriented Program 489

an item rather than a particular item or items. In object-oriented jargon, this idea
makes “item” an example of a class. A class is an abstract grouping of objects that
are similar to each other; the fundamental commonality between the objects of a
class is that they all can be operated on in the same way. For example, we can find
the price of any item in the same way and display the description of any item in
the same way, although the results are likely to be different for different items. Just
as a set can be a subset of another set, a class can be a subclass of a more general
superclass, Thus, the oxford-shirt class is a subclass of the item class, and the item
class is the superclass of the oxford-shirt class. We also say that the oxford-shirt class is
derived from the base class item. The ancestry of a class consists of all the classes it is
derived from, whether directly or indirectly. We choose to define a class’s ancestry as
including the class itself, as well as the class’s superclass, the superclass’s superclass,
etc. In our example, the ancestry of the oxford-shirt class consists of the oxford-shirt
class, the item class, and the object class. The object class is the ultimate ancestor of
all classes in our system. This organization of our program’s world into classes that
are subclasses and superclasses is called the class hierarchy. We can represent this
class hierarchy as a tree, with the object class at the root:

item-list item

object

oxford-shirtchinos

This diagram is our first example of a class diagram in a standard notation known
as the Unified Modeling Language, or UML. This notation also provides means for
expressing many other aspects of object-oriented design, not just the class hierarchy.
We’ll gradually explain more and more of the notation, as the need arises. (Even so,
we’ll only see the tip of the iceberg.)

The oxford-shirt class is really an abstract notion; when we talk about a particular
oxford cloth shirt, this particular concrete shirt is a specific example of the general
class. In object-oriented jargon, we say that a particular object is an instance of a class.
So, for example, if the first item we wanted to order was a blue oxford-cloth shirt
with a 32-inch sleeve length and a 16-inch neck size, this particular shirt would be
an instance of the oxford-shirt class. One very important principle in object-oriented
programming is that a particular object is an instance of all of the ancestor classes
of the class it belongs to, which means that our blue oxford-cloth shirt is not only

490 Chapter 14 Object-oriented Programming

an instance of the oxford-shirt class but also an instance of the item class and an
instance of the object class.

The UML class diagram can show information about the individual instances
as well as about the overall classes. Our first diagram showed only the hierarchical
relationship among the classes. However, an important relationship also exists be-
tween instances of the item-list class and instances of the item class. Each item-list
is associated with arbitrarily many items. From the item-list, we can find the items.
We can add this association to our diagram as follows:

item-list item

object

oxford-shirtchinos

0..1

*

The line between item-list and item represents the association. You can tell it is
an association rather than a subclass/superclass relationship because it doesn’t have
the triangular arrowhead. Instead, it has an arrowhead formed out of two lines.
This arrowhead points to the item class, which tells us that from the item-list, we
can find the items. If each item also could tell us what item-list it belonged to,
we’d have an arrowhead on the other end of the association as well. There is some
additional information near the two ends of the association. An asterisk (*) is on
the end pointing at the item class. This is a special UML notation indicating that
each item-list can have any number of items. If every item-list had to have exactly
five items, the number 5 would appear in place of the asterisk. If each item-list was
constrained to have somewhere between three and seven items, the notation would
be 3..7, and if the requirement was any number from 2 on up, the notation would be
2..*. These notations are called multiplicities. On the other end of the association,
we see the multiplicity 0..1. As we just indicated, this notation is the UML way of
indicating the range from 0 to 1. In other words, each item is associated either with
no item-list or with one item-list.

This multiplicity of 0..1 documents a design decision we made. At the moment we
only foresee having one item-list for the customer’s choices. But what if we changed
the program so that there could be multiple customers, each with an individual
item-list? We’d still want each item to be on at most one list. Even though an item
object is actually just a description of the clothing, and not the real cloth garment,
sharing would be a bad idea because we earlier decided that the item class supported

14.2 An Object-oriented Program 491

an operation for revising the specifics (such as size and color). If two customers had
the same item on their item-lists, and one of them changed the size or color, the
other customer would be surprised to see the same change. Therefore, we insist that
each item appear on at most one item-list. Allowing an item to be on no list at all
doesn’t seem to do any harm and may come in handy as we explore the little “world”
we are constructing, so we left this option open. Another designer might well have
chosen to insist that each item be on an item-list, by using a multiplicity of 1 where
we used 0..1. This illustrates one of the nice features of putting the associations on
the UML diagrams, complete with their multiplicities: it forces us to think about
these design decisions.

We’ve stressed that classes are abstract notions, whereas the objects that are in-
stances of the classes are concrete. However, our object-oriented programming system
is designed in such a way that each class has a concrete class object to represent it.
For example, the oxford-shirt class has an object called oxford-shirt-class that
represents it. These class objects are themselves instances of a class, namely, the
class class. The class class is a class that is used just for the concrete representations
of classes. For example, not only oxford-shirt-class but also object-class,
item-class, item-list-class, chinos-class, and even class-class are all
instances of the class class. If we add this class to our hierarchy, the full diagram
looks as follows:

item-list item

object

oxford-shirtchinos

0..1

*
class

Each instance of a class contains certain pieces of information, stored in instance
variables. Each instance of that class has the same assortment of instance variables:
for example, every oxford shirt has a color, a neck size, a sleeve length, and a price.
However, the specific values of those instance variables are stored independently
in each instance—each shirt gets to have its own color, size, and price. Moreover,
the instance variables are state variables that can change over time—if the customer
remembers having put on a few pounds, the size of the chinos ordered can be
changed.

Because an instance of one class is also an instance of all the ancestor classes, it
will have the instance variables of each of these classes. For example, every item has

492 Chapter 14 Object-oriented Programming

a price, and so if the first thing on the item-list is an item, it has a price. The fact that
it is not just a plain item, but rather an oxford-cloth shirt, is irrelevant. (However,
oxford-cloth shirts can and do have some additional instance variables, beyond those
that all items have.) The way we describe this situation is by saying that a class’s
instance variables are inherited by its subclasses. The oxford-shirt class gets its price
instance variable by inheritance from the item class.

Objects do more than just store information, however. They can also perform
operations. For example, an item can display its description and an item-list can add
another item to itself. The operations are traditionally known as methods. We speak
of general method names, such as item/display, which is the name used to make
any item display itself, no matter how it chooses to do so. (We include the class name
in the method name.) These method names are inherited by subclasses, so any item,
even if it is an oxford-cloth shirt, can be operated on using item/display. However,
the specific method implementation that gets used may or may not be inherited; in
the case of oxford-cloth shirts and displaying, the implementation gets overridden
with an oxford-shirt-specific way of displaying. If the method implementation is not
overridden, the superclass’s implementation is inherited. For example, oxford-cloth
shirts report their price exactly the same way as plain items do because this method’s
implementation is inherited.

Now, having completed our jargon lesson, and having earlier sketched out the
classes we need and their interfaces, we turn our attention to how the classes can
be implemented. We’ll use an object-oriented programming system that allows us
to write object-oriented programs in Scheme. (A later section addresses how the
object-oriented programming system itself is implemented.) This object-oriented
programming system is available from the web site for this book.

The first thing we need to do is to implement the three classes we previ-
ously described. We start by defining the item-list class, using a procedure called
define-class :

(define-class
’item-list ; the class is named item-list
object-class ; it has the object-class as its superclass
’(item-vector ; it has instance variables named item-vector
num-items) ; and num-items

’(add ; and methods with these names
display
total-price
delete
choose
empty?))

Most of the preceding arguments to define-class follow directly from our earlier
discussion of the class and its interface. In particular, the method names come from

14.2 An Object-oriented Program 493

our “wish list” of operations, and the superclass is object-class because we had no
more specific superclass in mind. The only genuinely new revelation is the instance
variables. As you might guess from their names, we are choosing to use a vector to
hold the items, and to allow us to leave some extra unused space in the vector, we
use another instance variable to explicitly record the number of items. That way we
can make the vector big enough to accommodate some addition of items; if it still
turns out to be too small, we can replace it with a larger one.

The define-class procedure is an abbreviation for a long list of other def-
initions. For example, by defining the item-list class as shown, we have defined
item-list-class to be the actual class object (representing the class) but have also
defined make-item-list to be the constructor, item-list? to be a predicate that
tests whether an object is an item-list or not, etc. (We’ll have more to say about con-
structors and predicates later.) Thus, you should not be surprised when we use names
that you haven’t seen explicitly defined. For example, we’ll use make-item-list
without ever saying (define make-item-list . . .). The definition was provided
by define-class.

Next we need to implement the methods. For an example of how this implemen-
tation is done, let’s first look at the simplest one, empty?, which only needs to check
whether there are 0 items:

(class/set-method!
item-list-class ’empty?
(lambda (this)
(= (item-list/get-num-items this) 0)))

Not only does this implementation of the empty? method illustrate how class/set-
method! is used to provide method implementations, it also provides an example of
how the value of an instance variable is retrieved. The item-list/get-num-items
procedure can be applied to any instance of the item-list class to retrieve the current
value of its num-items instance variable; we call it a getter procedure. The particular
item-list it is applied to in the foregoing is the one passed in to the empty? method
as that method’s one argument, called this. Every method must have at least one
argument, the object to operate on. No matter what other arguments a particular
method might need, its first argument must be this object. (Here it was the only
argument.) By convention this first argument is called this because it is “this object.”
(Another popular convention is to call it self because from the object’s perspective it
is “myself.” We’ll stick with this.) To summarize in the anthropomorphic language
that is commonly used by object-oriented programmers, an item-list answers the
question of whether it is empty by getting its own number of items and checking to
see whether that equals 0.

The num-items instance variable will clearly need to be incremented in the add
method and decremented in the delete method. A more subtle question is how

494 Chapter 14 Object-oriented Programming

it gets set to 0 in the first place. The most logical time to do this would be when
the item-list is first created. Our object-oriented system lets us create an item-list as
follows:

(define example-item-list (make-item-list))

What happens when we create this item-list is that a new instance of the item-list
class is created and then a special object-class method, called init, is automatically
invoked on this newly created object. The normal implementation of the init
method, provided in the object class, does nothing interesting. However, it can be
overridden like any other method. Thus we can arrange for num-items to start at
zero by providing a suitable init method in the item-list class.

The item-list class’s init method should set the num-items instance vari-
able using that instance variable’s setter procedure, which is called item-
list/set-num-items!. We’ll also have it set the item-vector to a 10-element
vector initially because 10 seems like a large enough number that many customers
will stay within it, but it is still a small enough number to not waste a great deal of
the computer’s memory. (Remember, if a particular customer wants to order more
than 10 items, we can always switch to a bigger vector because item-vector is a
state variable that can change.) Putting these two together, we get the following:

(class/set-method!
item-list-class ’init
(lambda (this)
(item-list/set-item-vector! this (make-vector 10))
(item-list/set-num-items! this 0)))

To see this init method in action, we can now do the above definition of
example-item-list, which invokes make-item-list and gives a name to the
result. Now we can check that it really behaved as expected:

(item-list/get-num-items example-item-list)
0

(item-list/empty? example-item-list)
#t

Another useful way to see that the item-list was constructed as expected is by using the
object/describe method, which is provided by our object-oriented programming
system for the sake of debugging and exploration:

14.2 An Object-oriented Program 495

(object/describe example-item-list)

An instance of the class item-list

with the following instance variable values:

num-items: 0

item-vector: [a 10 element vector]

class: [an object of class class]

You can see from the preceding that the num-items and item-vector instance
variables are as expected. You can also see that there is a third instance variable called
class; every object has one of these. It records the most specific class this object is
an instance of, which plays an important role in the underlying implementation of
the object-oriented programming system. Until we examine that implementation in
Section 14.4, you can safely ignore this instance variable.

Incidentally, we sometimes call procedures like make-item-list instantia-
tors rather than constructors because the way they construct objects is by mak-
ing instances of classes. From the object’s viewpoint it is a constructor, whereas
from the class’s viewpoint, it is an instantiator. We say that make-item-list is
item-list-class’s instantiator.

We now can continue implementing the methods of item-list-class one by
one, starting with add, which adds an item to the list. It needs to check to see whether
there is still room in the vector for the additional item. If not, the vector needs to be
replaced with a bigger one, and then the addition can continue. Otherwise, the item
can be inserted into the vector and the num-items counter increased by 1. For now
let’s leave out the details of how we upgrade to a bigger vector; a comment indicates
where this upgrade will need to go:

(class/set-method!
item-list-class ’add
(lambda (this item)
(let ((num-items (item-list/get-num-items this))

(item-vector (item-list/get-item-vector this)))
(if (= num-items (vector-length item-vector))

(begin ; some code (yet to be determined) goes here to
; replace the vector with a bigger one somehow
(item-list/add this item))

(begin (vector-set! item-vector num-items item)
(item-list/set-num-items! this (+ num-items 1))
’added)))))

496 Chapter 14 Object-oriented Programming

Exercise 14.1

Suppose that we forgot to replace the comment with the actual code to upgrade to
a bigger vector and therefore used the method exactly as shown. Under what cir-
cumstances would users not notice our mistake? When they did notice our mistake,
what would the symptoms be? Explain.

Rather than complicate the above method with the details of “growing” into
a bigger vector, a better option is to use procedural abstraction to advantage: We
concern ourselves here with what we want done (growing) and elsewhere with how
that should be accomplished. That is, here we simply invoke a grow procedure
and elsewhere define what that procedure does. In the object-oriented programming
context, this grow procedure actually needs to be a method of the item-list class.
Thus, in addition to all the methods from our original wish-list, which constitute
the “ public interface” of the class, we’ll have an additional grow method that is
for “ private” internal use. The define-class needs to be revised to show the one
additional method name; we’ll also put some comments in to distinguish the two
categories of methods:

(define-class
’item-list
object-class
’(item-vector
num-items)
’(
;; intended for public consumption:
add
display
total-price
delete
choose
empty?
;; intended for private, internal use:
grow
))

Having added this method name, we can now replace the comment in our add
method with real Scheme code:

(class/set-method!
item-list-class ’add
(lambda (this item)

14.2 An Object-oriented Program 497

(let ((num-items (item-list/get-num-items this))
(item-vector (item-list/get-item-vector this)))

(if (= num-items (vector-length item-vector))
(begin (item-list/grow this)

(item-list/add this item))
(begin (vector-set! item-vector num-items item)

(item-list/set-num-items! this (+ num-items 1))
’added)))))

Now we no longer have the worry that we might forget to replace the comment. Of
course, we could forget to implement the grow method; if that happens, we’ll get
an “unimplemented method” error message when growth first becomes necessary,
which at least points us right to the problem.

The grow method itself can be written quite straightforwardly, particularly if we
allow ourself the use of a vector-copy! procedure for copying the contents of the
old vector into the new, larger vector.

Exercise 14.2

The vector-copy! procedure takes two vectors as its arguments. The second vector
must be at least as long as the first. The vector-copy! procedure copies each
element of the first vector into the corresponding position in the second vector.
Write this procedure.

Exercise 14.3

Now write the grow method for item-list-class. It should make a new vector
that is twice as long as the current item-vector. It should then copy the contents
of the old vector into the new one. Finally, it should set the item-vector instance
variable to be the new vector.

One method commonly invokes another method on the same object, as the add
method did with the grow method. By the same token, a method will often also
invoke some methods on other, related objects. For example, to display an item-list,
each item in the list needs to be displayed:

(class/set-method!
item-list-class ’display
(lambda (this)
(let ((num-items (item-list/get-num-items this))

(item-vector (item-list/get-item-vector this)))
;;(continued)

498 Chapter 14 Object-oriented Programming

(from-to-do
0 (- num-items 1)
(lambda (index)
(display (+ index 1))
(display ") ")
(item/display (vector-ref item-vector index))
(newline))))

(display "Total: ")
(display-price (item-list/total-price this))
(newline)
’displayed))

As you can see, when item-list/display is applied to an item-list, it winds up
applying item/display to each of the items stored in its vector. Of course, it
does some other things as well, namely, decorating each item’s display with an item
number in front, such as 1), separating the items with newlines, and adding a display
of the total price at the end. We assume that there is a procedure display-price
that can take a numerical price and suitably display it; for example, in the United
States there would be a dollar sign at the front and a decimal point before the last
two digits.

Exercise 14.4

Write this (United States) display-price procedure. Assume that prices are rep-
resented within the program as an integer number of cents, such as 1950 for 19
dollars and 50 cents. You can use quotient and remainder to calculate the num-
ber of dollars and remaining cents. (Representing monetary amounts as an integer
number of cents is a common practice in business programs because it can elimi-
nate round-off errors. For example, adding together 100 one-cent items should yield
an exact dollar, whereas adding 100 copies of .01 together on our computer yields
1.0000000000000007, due to the inexact way in which .01 is represented in the
computer.)

Exercise 14.5

Write the total-price method for the item-list class; you can use item/price
to get the price of each item.

To delete an item from an item list, we need to decrement the num-items
instance variable. If the item wasn’t the last one in the list, the items after it should
be shifted one position closer to the beginning of the vector, to close up the gap.

14.2 An Object-oriented Program 499

Exercise 14.6

Write the delete method for the item-list class in this way. It should take the
item to delete as an argument (after the this argument) and search the vector to
find it, using eq? to compare the specified item with each one in the vector. It is an
error if the item is not in the item-list.

There is one very subtle problem with a delete method that works as we just
described. As the simplest illustration, consider starting with a new, empty item-list,
inserting a single item into it, and then deleting it again. When the item is inserted
into the item-list, position 0 in the vector will be set to the item and num-items
will be increased to 1. When the item is deleted, num-items is decreased to 0 and
the vector is left unchanged. Thus, position 0 of the vector still holds the item.
From a logical standpoint, this doesn’t matter because it will never be accessed;
only the first num-items elements of the vector ever get looked at. However, the
underlying Scheme system won’t have any way of knowing this, so it will keep the
item around just in case it is accessed, even though it never will be. If the item is not
accessible in any way other than through the vector, its needless appearance in the
vector will be all that prevents the Scheme system from reusing (garbage collecting)
the portion of the computer’s memory that the item occupies. Thus, although the
program will work correctly, it may wind up using more memory than it needs to,
or even unnecessarily running out of memory, because deleted items are still in the
item-vector.

Exercise 14.7

Fix this problem by modifying your delete method so that after shifting the items
down in the vector to fill the gap, it uses vector-set! to store the symbol empty (or
any other arbitrary value) into the newly unused vector location. This vector location
is the one that prior to the deletion held the last item.

At this point, the only method that remains to be implemented for the item-list
class is the choose method, which will get us for the first time into the user interface
of this program because we need to provide the user with some way of choosing
an item from the list. As a rather crude approach to the user interface, we’ll display
the whole item-list (using item-list/display) and then ask the user to select an
item. Because the items are numbered consecutively from 1 by the display method,
we can input the user’s choice as an integer in the range from 1 to the number of
items. Notice that we’ve got a tight coupling between the display method and the
choose method; this coupling may not be good for the long-term maintainability
of our program, particularly if we don’t explicitly document it in the requirements

500 Chapter 14 Object-oriented Programming

for the display method. At any rate, our choose method is as follows; we use an
input-integer-in-range procedure, which we’ll need to write later.

(class/set-method!
item-list-class ’choose
(lambda (this)
(if (item-list/empty? this)

(error "Can’t choose an item when there aren’t any.")
(begin
(display "Which item?")
(newline)
(item-list/display this)
(vector-ref (item-list/get-item-vector this)

(- (input-integer-in-range
1 (item-list/get-num-items this))
1))))))

The input-integer-in-range procedure simply needs to display a prompt,
read an input from the user, and if it isn’t appropriate, complain and try again:

(define input-integer-in-range
(lambda (min max)
(display "(enter ")
(display min)
(display "-")
(display max)
(display ")")
(newline)
(let ((input (read)))
(cond ((not (integer? input))

(display "input must be an integer and wasn’t")
(newline)
(input-integer-in-range min max))
((or (< input min)

(> input max))
(display "input out of range")
(newline)
(input-integer-in-range min max))
(else
input)))))

14.2 An Object-oriented Program 501

At this point we’re done implementing the item-list class (although we’ll look at
variations on it in the next section), and we can move on to our other principal class,
item. The only piece of information we can be sure is associated with any item is its
price—not all items have distinguishing colors or sizes, for example. Thus we’ll put
a single instance variable, price, in the item class, leaving the rest (color, size, . . .)
for more specialized subclasses. Recalling our earlier wish list of method names for
the item class, we get the following definition:

(define-class
’item
object-class
’(price)
’(
;; intended for public consumption:
price
display
input-specifics
revise-specifics))

One decision we’ll have to make is how an item’s price gets set in the first place.
A straightforward possibility is to have it supplied to the make-item constructor as
an argument, as in

(define example-item (make-item 1950)) ; 1950 cents = $19.50

Our object-oriented programming system handles constructor arguments such as this
one by passing them as additional arguments to the init method, after the this
argument. Thus the item class needs an init method that accepts the price as its
second argument:

(class/set-method!
item-class ’init
(lambda (this price)
(item/set-price! this price)))

Most of the remaining methods for the item class are easy. The price method
needs only to get the value of the price instance variable and return it, the display
method needs only to display the price (because there is no other information), and
the input-specifics method doesn’t need to do anything at all because there are
no “specifics” (such as color or size) to get.

502 Chapter 14 Object-oriented Programming

Exercise 14.8

Write these three methods.

Exercise 14.9

Play around with the item and item-list classes. Make some items with various
prices and add them to and delete them from an item-list. Display the items and
the item-list, redisplaying the item-list after each addition or deletion. Also use
object/describe to look at the items and at how the item-list evolves. Make sure
the item-list successfully outgrows its original vector.

The only remaining method for the item class is revise-specifics. At first
glance, it would appear that we should simply make this a do-nothing method,
like input-specifics, because plain items have no specifics. However, there is
another, better alternative. We can write a revise-specifics method that does
nothing except invoke the input-specifics method. For a plain item, this will of
course still do nothing. For an instance of some subclass of item, such as oxford-
shirt, if the revise-specifics method isn’t overriden, the one from the item
class will be used, but it will wind up invoking the subclass’s more specialized
input-specifics method, and all the specifics of color, size, etc., will wind up
being input. Finally, if some subclass wishes to override not only input-specifics
but also revise-specifics, it can provide a more sophisticated means of revision
that allows some specifics to be left unchanged and others revised, rather than
requiring them to all be input over again.

Exercise 14.10

Write the revise-specifics method for the item class.

To demonstrate more concretely our point about revise-specifics, consider
the following example:

(define-class
’special-item
item-class
’()
’())

14.2 An Object-oriented Program 503

(class/set-method!
special-item-class ’input-specifics
(lambda (this)
(newline)
(display " *** doing special input ***")
(newline)))

(define a-normal-item (make-item 1950))

(define a-special-item (make-special-item 1000000))

(item/input-specifics a-normal-item)

(item/input-specifics a-special-item)

*** doing special input ***

(item/revise-specifics a-normal-item)

(item/revise-specifics a-special-item)

*** doing special input ***

As you can see, although we only provided a specialized version of the input-
specifics method, both item/input-specifics and item/ revise-specifics
now behave differently for the normal item than for the special item. (For the
normal item, both are silent, whereas for the special item, both print out the message
“doing special input.”) This is an important consequence of using generic operations:
When one operation invokes another, making a specialized version of the called one
effectively specializes the behavior of the calling one as well.

Speaking of specialized subclasses of item-class, we should get around to cre-
ating one. Oxford-cloth shirts have colors, neck sizes, and sleeve lengths, in addi-
tion to the inherited instance variables (price from item-class and class from
object-class). There is also one other, less obvious, instance variable that we
need to add, one to indicate whether the specifics have been input yet or not. That
way, if the item is displayed before the specifics have been input, a less detailed
description can be produced. For this purpose we’ll use a boolean-valued instance
variable called specified-yet. There are no additional method names beyond
those inherited from item-class, so the definition is as follows:

(define-class
’oxford-shirt
item-class
’(color
neck

504 Chapter 14 Object-oriented Programming

sleeve
specified-yet)

’(
))

We’ll set up the init method so that we can use make-oxford-shirt as shown
below:

(define an-oxford-shirt (make-oxford-shirt))

(item/price an-oxford-shirt)
1950

(oxford-shirt/get-specified-yet an-oxford-shirt)
#f

As you can see, we didn’t need to specify any arguments to the make-oxford-shirt
constructor, and we wound up with a price of 1950 and the specified-yet instance
variable set to #f. The question is, how shall we arrange for this result? The most
obvious possibility, but not the best, would simply be to have the init method set
both the price instance variable and the specified-yet instance variable:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item/set-price! this 1950)
(oxford-shirt/set-specified-yet! this #f)))

The problem with this method implementation is that although it works, it con-
tains a nearly verbatim copy of what item-class’s version of the init method
does, which could result in a maintainability problem. Right now all item-class’s
init does is to set the price instance variable, but what if we changed it to do
more? Would we remember to also make the additions in oxford-shirt-class’s
init? The program would be more maintainable if rather than repeating what
item-class’s init does, we could simply invoke that init method and let it do
whatever it needs to do. At first, you might think that the following will do that:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item/init this 1950)
(oxford-shirt/set-specified-yet! this #f)))

14.2 An Object-oriented Program 505

The problem is that when item/init is applied to an object, the class of the
object determines which implementation of the init method is used, just like
with any other method invocation. Thus, when it is applied to an instance of
the oxford-shirt class, as here, we would wind up using the init method from
oxford-shirt-class. As such, this init method is simply reinvoking itself, result-
ing in an infinite recursion. (Actually, it isn’t even an error-free infinite recursion
because the recursive call passes in two arguments, but this init method only
accepts one.)

What we need is to say “please ignore the fact that this object is more than
just a plain item; I still want you to invoke the plain item init method.” In our
object-oriented programming system, we can do this by using item^init instead of
item/init:

(class/set-method!
oxford-shirt-class ’init
(lambda (this)
(item^init this 1950)
(oxford-shirt/set-specified-yet! this #f)))

This use of ^ rather than / is a general feature of our object-oriented program-
ming system. It always means to use the method implementation corresponding
to the class that explicitly appears before the ^, rather than using the method im-
plementation corresponding to the class of the object being operated on. For ex-
ample, returning to the earlier example of the special-item class, if we were to say
(item^input-specifics a-special-item), we wouldn’t get the special message
we get from (item/input-specifics a-special-item) because we are asking
to have the method invoked that would be used were the special item just a plain
item.

The ^ feature is not nearly as commonly used as normal method invocation; the
primary use for it is to allow a method (such as the init method above) to invoke
the method of the same name from the superclass. In particular, normally every
init method will invoke the superclass’s init method in this way; therefore each
ancestor class winds up with a chance to do its own initialization.

Exercise 14.11

The two init methods we previously showed for item-list-class and item-
class violated this guideline. Neither of them gave the superclass’s init a chance.
Luckily, the superclass (object-class) doesn’t currently do anything in its init
method. However it would be wiser not to count on that. Revise these two init
methods so that their first step invokes the superclass’s init method.

506 Chapter 14 Object-oriented Programming

This feature of having a method invoke the like-named method from the super-
class provides an intermediate point between the extremes of either inheriting the
superclass’s method unchanged or totally overriding it with a new method imple-
mentation. Instead, an overriding implementation can be provided that augments
the superclass’s implementation by invoking it and also doing some extra work. For
example, consider the display method. The implementation in item-class al-
ready does some useful work, namely, displaying the price of the item. If there were
ever any additional information that all items had, presumably this display method
would show it as well. So, when we write a display method for the oxford-shirt class,
it should add on to that base behavior by taking care of displaying the information
specific to that subclass and then using item^display as well:

(class/set-method!
oxford-shirt-class ’display
(lambda (this)
(if (oxford-shirt/get-specified-yet this)

(begin
(display (oxford-shirt/get-color this))
(display " Oxford-cloth shirt, size ")
(display (oxford-shirt/get-neck this))
(display "/")
(display (oxford-shirt/get-sleeve this))
(display "; "))

(display "Oxford-cloth shirt; "))
(item^display this)))

Exercise 14.12

Suppose you do the following:

(let ((item-list (make-item-list)))
(item-list/add item-list (make-item 100))
(item-list/add item-list (make-oxford-shirt))
(item-list/add item-list (make-item 200))
(item-list/add item-list (make-item 300))
(item-list/add item-list (make-oxford-shirt))
(item-list/display item-list))

What output do you get from this example? Explain why.

The only method we still need to implement for the oxford-shirt class is the
input-specifics method. (We could also optionally add a revise-specifics

14.2 An Object-oriented Program 507

method.) Our input-specifics follows. Notice that it not only sets the in-
stance variables corresponding to the shirt’s color and size but also sets the
specified-yet instance variable to #t. To get input from the user, it makes
use of the input-integer-in-range procedure we saw earlier, as well as an
input-selection procedure that allows the user to select one of a collection
of values, which in this case are colors.

(class/set-method!

oxford-shirt-class ’input-specifics

(lambda (this)

(display "What color?")

(newline)
(oxford-shirt/set-color!

this (input-selection ’("Ecru" "Pink" "Blue" "Maize" "White")))

(display "What neck size? ")

(oxford-shirt/set-neck! this (input-integer-in-range 15 18))

(display "What sleeve length? ")

(oxford-shirt/set-sleeve! this (input-integer-in-range 32 37))

(oxford-shirt/set-specified-yet! this #t)

’inputted))

A simple approach to implementing input-selection is to print out each of
the choices with a number in front of it and then use input-integer-in-range
to allow the user to select one. The procedure can then return the element in the
list of choices that corresponds to the integer the user entered:

(define input-selection
(lambda (choices)
(define display-loop
(lambda (number choices)
(if (null? choices)

’done
(begin
(display " ")
(display number)
(display ") ")
(display (car choices))
(newline)
(display-loop (+ number 1) (cdr choices))))))

(display-loop 1 choices)
(list-ref choices

(- (input-integer-in-range 1 (length choices))
1))))

508 Chapter 14 Object-oriented Programming

At this point we’ve seen enough of how the classes work that we can turn our atten-
tion to the overall program that uses these classes. We call this program compu-duds:

(define compu-duds

(lambda ()

(let ((item-list (make-item-list)))

(define loop

(lambda ()

(newline)
(display "What would you like to do?")

(newline)

(display " 1) Exit this program.")

(newline)

(display " 2) Add an item to your selections.")

(newline)

(display " 3) List the items you have selected.")

(newline)

(display
" 4) See the total price of the items you selected.")

(newline)

(let ((option

(if (item-list/empty? item-list)

(input-integer-in-range 1 4)

(begin

(display

" 5) Delete one of your selections.")

(newline)

(display
" 6) Revise specifics of a selected item.")

(newline)

(input-integer-in-range 1 6)))))

(newline)

(cond ((= option 2)

(let ((item (input-item)))

(item-list/add item-list item)

(item/input-specifics item)))

((= option 3)

(item-list/display item-list))
((= option 4)

(display-price (item-list/total-price item-list))

(newline))

;;(continued)

14.2 An Object-oriented Program 509

((= option 5)

(item-list/delete item-list
(item-list/choose item-list)))

((= option 6)

(item/revise-specifics

(item-list/choose item-list))))

(if (not (= option 1))

(loop))))) ;end of the loop procedure

(loop)))) ;this starts the loop

As you can see, nothing thus far has embodied any knowledge of what kinds
of clothing our on-line clothing store has to offer. That knowledge is used by the
input-item procedure, which allows the user to select an item to add. Here is a
simple version:

(define input-item
(lambda ()
(display "What would you like?")
(newline)
(display " 1) Chinos")
(newline)
(display " 2) Oxford-cloth shirt")
(newline)
(if (= (input-integer-in-range 1 2) 1)

(make-chinos)
(make-oxford-shirt))))

Although our on-line clothing store offers two kinds of clothing, chinos and oxford-
cloth shirts, we’ve only implemented a class for the shirts. We need to implement a
class for chinos in a similar manner so that the rest of the program will work. The
definitions of chinos-class and its init, display, and input-specifics meth-
ods follow, completing our compu-duds program. However, although the program
will now be complete, the next section investigates extensions to and variations on
this program.

(define-class
’chinos
item-class
’(color
size ; waist, in inches
inseam ; also in inches
cuffed ; #t = cuffed, #f = hemmed

510 Chapter 14 Object-oriented Programming

specified-yet)
’(
))

(class/set-method!
chinos-class ’init
(lambda (this)
(item^init this 3300) ; chinos are priced at $33.00
(chinos/set-specified-yet! this #f)))

(class/set-method!
chinos-class ’display
(lambda (this)
(if (chinos/get-specified-yet this)

(begin
(display (chinos/get-color this))
(display " chinos, size ")
(display (chinos/get-size this))
(display ", ")
(display
(if (chinos/get-cuffed this)

"cuffed"
"hemmed"))

(display " to ")
(display (chinos/get-inseam this))
(display " inches; "))

(display "Chinos; "))
(item^display this)))

(class/set-method!
chinos-class ’input-specifics
(lambda (this)
(display "What color?")
(newline)
(chinos/set-color! this

(input-selection
’("Charcoal" "Khaki" "Blue")))

(display "What waist size? ")
(chinos/set-size! this (input-integer-in-range 30 44))
(display "Hemmed or cuffed?")
(newline)
(display " 1) Hemmed")

14.3 Extensions and Variations 511

(newline)
(display " 2) Cuffed")
(newline)
(chinos/set-cuffed! this (= (input-integer-in-range 1 2) 2))
(display "What inseam length? ")
(chinos/set-inseam! this (input-integer-in-range

29
(if (chinos/get-cuffed this)

34
36)))

(chinos/set-specified-yet! this #t)
’inputted))

Exercise 14.13

Explain the role served by each conditional expression (i.e., if or cond) appearing
in chinos-class’s methods.

14.3 Extensions and Variations

In this section we’ll look at some of the many possible extensions to the compu-duds
program from the last section. Because many of these extensions and variations will
involve extending the class hierarchy or modifying existing classes, we first look at a
couple additional tools our object-oriented programming system provides for helping
to keep track of these modifications.

The first of these tools is that at any point you can see the complete class hierarchy
by using show-class-hierarchy, as follows:

(show-class-hierarchy)

object

item-list

item

chinos

oxford-shirt

class

In this case, we see that the object class (which is the “root” of the class hierarchy)
has three subclasses: item-list, item, and class. (We’ll learn more about the class class,
which is used for representing classes, in the next section.) The item class in turn
has the chinos and oxford-shirt subclasses. By using show-class-hierarchy as you
add various new classes or reorganize the existing classes, you’ll have an easier time

512 Chapter 14 Object-oriented Programming

keeping track of what you’ve done so far. It is also a useful tool if you need to work
with someone else’s program, in that it provides an overview.

Another useful tool for keeping track of your work as you modify exist-
ing classes and create new ones is object/describe. We’ve already seen how
object/describe can be used to examine the state of a normal object, showing
each of its instance variables. However, object/describe is also useful when ap-
plied to the special class objects, such as chinos-class. This is because there is
an overriding describe method in the class class, which results in a special form of
description just for classes. Here is an example:

(object/describe chinos-class)

The class chinos has the following ancestry:

object

item

chinos

and the following immediate subclasses:

and the following instance variables (including inherited ones):

specified-yet (new)

cuffed (new)

inseam (new)

size (new)

color (new)

price (from item)

class (from object)

and the following method names (including inherited ones):

revise-specifics (name from item, implementation from item)

input-specifics (name from item, new implementation)

display (name from item, new implementation)

price (name from item, implementation from item)

init (name from object, new implementation)

describe (name from object, implementation from object)

As you can see, this output provides a good overview of the status of the class, which
could help you keep track of your work as you modify and create classes.

Before we start in on the actual extensions and variations, one final comment
is worth making; it is a warning regarding the ordering restrictions that our object-
oriented programming system imposes. When a class is defined, the superclass must
already have been defined. When a method is set, the class needs to already have
been defined. When an object is created, the class it is an instance of must already
exist. (However, the methods don’t need to have been set yet.) If you redefine a class,
you’ll need to redefine all the classes descended from it, reset all the methods in those

14.3 Extensions and Variations 513

various redefined classes, and remake any instances of those classes. Otherwise, you
wind up with the subclasses still being subclasses of the old superclass, the methods
existing only in the old class, and the objects still being instances of the old class. If
you just reevaluate a class/set-method!, on the other hand, no problems result;
all instances of the class and any descendant classes that inherit the implementation
will immediately get the new version.

Now let’s explore some variations and extensions of the compu-duds program. The
first variation doesn’t use any of the fancier features of object-oriented programming
but rather takes advantage of data abstraction (i.e., the separation between a class’s
interface and its implementation). Consider the total-price method within the
item-list class. As it stands now, it loops through all the items, adding up their prices.
If the total price is repeatedly queried, this adding up would be wastefully repeated.
Instead, the item-list could keep track of the total price as it added and deleted items
and simply return the current total when queried.

Exercise 14.14

Modify the definition of the item-list class and of its add, delete, and total-price
methods in order to keep and use a running total price in this way. Without changing
any other part of the compu-duds program, it should work just the same as before,
except with regard to efficiency.

Next let’s look at adding new subclasses of item-class. The existing two sub-
classes allow you to dress like two-thirds of this book’s authors, who are frequently
seen wearing oxford-cloth shirts and chinos. But perhaps, like most of our students,
you have other tastes in clothing.

Exercise 14.15

Add one or more additional kinds of items to compu-duds so that it more closely
reflects your own taste in clothing.

Exercise 14.16

If you added other kinds of pants than chinos, or other kinds of shirts than Oxford
shirts, you may have discovered some commonality between your new classes and the
existing classes. Reorganize the class hierarchy so there are subclasses of item-class
for pants and shirts, with the chinos now being a subclass of pants-class and Oxford
shirts positioned under shirts. Place your own kinds of pants and shirts under the
more general classes as well, and figure out what commonality you can centralize.

514 Chapter 14 Object-oriented Programming

Exercise 14.17

How about adding yet another level of hierarchy between shirt-class or
pants-class and the specific kinds of pants and shirts? What classes of an in-
termediate degree of specialization might you include?

In addition to using subclassing to reflect real-world concerns, such as additional
kinds of clothing, we can also use it purely for the program’s internal purposes. For
example, consider the sizing of the vector in the item-list class. Right now, it grows
(by doubling in size) whenever addition of an item requires it to, but it never shrinks,
no matter how many items are deleted. For many applications, this is a reasonable
design decision. However, if you want to be particularly thrifty with the computer’s
memory, it might be desirable to have a kind of item-list that shrank as deletions
occured. Thus we’ll define a subclass of item-list-class for thrifty-item-lists that
is indistinguishable in terms of what operations it provides and how they outwardly
behave but that shrinks down to a smaller vector when appropriate.

As a brief side trip, not particularly related to object-oriented programming, con-
sider what “when appropriate” should mean: When should the vector shrink? At
first you might think that because we double the vector’s size when it overflows, we
should cut the vector’s size in half when it becomes only half-full. The problem
with this approach is that if the customer happens to repeatedly add, then delete,
then add, then delete, etc., we might wind up moving to a new size of vector on
every single operation. For example, if we start with a 10-element vector and the
customer after adding 10 items adds an eleventh, we move to a 20-element vector.
The customer then deletes an item, leaving the 20-element vector only half-full, so
we move back to a 10-element vector. The eleventh item is added again, leading us
back to a 20-element vector, etc.

A way around this oscillation between neighboring sizes is to demand that the
vector get even emptier than half-empty before we shrink down to a vector half the
size. For example, we can shrink to a vector half the size when a deletion results
in the vector being one-third full or less. However, the vector should never shrink
below its original size of 10.

Exercise 14.18

Make a thrifty-item-list subclass of item-list-class that behaves in this way. By
simply changing the compu-duds procedure to use make-thrifty-item-list in
place of make-item-list, you should be able to switch to this new kind of item list.
In particular, the rest of the program, which thinks it is operating on an item-list, will
still be right because a thrifty-item-list is an item-list. Be sure not only to check that
the program still works but also to use object/describe to make sure the vector
size is growing and shrinking appropriately.

14.3 Extensions and Variations 515

As we’ve remarked before, one of the most central features of object-oriented
programming is its use of generic operations to allow instances of various subclasses
of a class to be uniformly operated upon, even if the resulting behavior varies. For
example, this allows chinos to be displayed differently from Oxford shirts, even though
item/display is done to both. As a consequence of this, we rarely need predicates
to test whether an object is an instance of a particular class because we can generally
get appropriate behavior for each class without needing conditionals that say “if this
item is an Oxford shirt, display it this way, whereas if it is a pair of chinos, display
it this other way.” Nonetheless, there are occasionally circumstances for which class
predicates are useful, and so our object-oriented programming system provides them.
Each class defined using define-class automatically gets a predicate with a name
formed by adding a question mark to the end of the class name, such as chinos?.
The most common situation in which these predicates are useful is when sifting a
particular kind of object back out of a mixed collection.

Exercise 14.19

Add to the compu-duds program a feature that lets the user change in a single step
the waist size of all the items selected that are chinos (and hence have a waist size).
If in Exercises 14.15 and 14.16 you added other kinds of pants and introduced a
general pants class, your new feature should change the waist size of all pants, rather
than merely of all chinos.

Another feature of object-oriented programming that we haven’t explicitly illus-
trated before now is that a class can be useful even without implementations for all
its methods, if we don’t intend to ever instantiate the class but rather use it only as a
framework for subclasses that are instantiated and that provide the missing method
implementations. In this case the class is called an abstract class. The compu-duds
program very nearly contained an example of an abstract class, in that the item
class really has no reason ever to be instantiated to form “plain items,” other than
for the sake of some of our pedagogic examples; in the program itself, only specific
subclasses of item ever get instantiated. So, for example, we could have left out
item-class’s implementation of the input-specifics method. With that omis-
sion, the program would have been unaffected, but we would no longer have the
option of “plain items.” In other words, the item class would have become abstract.

The idea of an abstract class can be taken to the fullest extent, often termed a pure
abstract class, if the class provides only the names (and presumably specifications)
for methods, without providing any method implementations or instance variables.
In this case the class is serving as a true abstract data type, that is, just an interface
specification, with its subclasses providing the implementations. For example, there
is only a relatively minor amount of implementation sharing between the different
kinds of item; they share the price instance variable and method, and the display

516 Chapter 14 Object-oriented Programming

method for showing the price, which gets augmented in the more specific display
methods. Because this implementation sharing is so minor, it might make more
sense to eliminate it altogether, leaving the item class purely abstract. As a negative
consequence, some repetition would occur among the various subclasses, but as
a positive consequence, the subclasses would be free to implement the formerly
shared methods in other, perhaps simpler, ways. For example, the price method
could simply return a constant price rather than having to get the value of a price
instance variable.

Exercise 14.20

Another common use for pure abstract classes is to make explicit an interface that
can be implemented using two or more different data structures. For example, we
implemented the abstract interface of the item-list class using a vector but could
instead have used a true list representation, in the sense of cons, car, cdr, null?,
and set-cdr!. Change the class item-list to be purely abstract, with two subclasses
called item-list-as-vector and item-list-as-list that provide these two implementations.
You will have to change compu-duds to use one of the make-item-list-as-. . .
constructors in place of make-item-list.

Finally, we’ll conclude this section on extensions and variations with two loose
ends left from the preceding section.

Exercise 14.21

We mentioned that the revise-specifics method could be overridden to allow
more selective revision, rather than requiring the user to input all the specifics over
again. Illustrate this possibility.

Exercise 14.22

We mentioned the possibility of using a class for prices. Presumably it would be most
convenient if the constructor would take the number of dollars and the number of
cents as two arguments, and if we had methods for displaying the price and for adding
another price to the price. Design a class with this interface. Consider two possible
implementations: one that stores the dollars and cents separately and one that stores
them combined into a total number of cents, such as we’ve used previously. Explain
the trade-offs between these implementations, and implement whichever of them
you decide is on the whole preferable, or both if you think they should coexist. Test
your price class in isolation, and then change the compu-duds program to use it.

14.4 Implementing an Object-oriented Prog. System 517

14.4 Implementing an Object-oriented Programming System

In this section, we’ll show how the object-oriented programming system used in the
preceding sections can be implemented. The object-oriented programming system
is a relatively large and complex piece of software, so we’ll explain it incrementally
in bite-sized chunks, each occupying a subsection. First we’ll provide an overview
of the system, and then we’ll show how instance variables are represented and their
getters and setters implemented. Next we’ll show how instantiators (constructors)
are implemented, then methods, and then predicates. Once we have explained
all these features of classes, we’ll show how classes themselves are constructed. In
the last two subsections we pull it all together. We make extensive use of vectors
to provide a reasonably efficient implementation of object-oriented programming,
which is similar to some implementations used for object-oriented languages such as
Java. If you’d rather accept object-oriented programming as a “black box” technology
instead of looking behind the scenes, this section can be skipped without any loss of
continuity.

Throughout this explanation we’ll use the object-oriented programming system
as our technology for describing itself. We’ll assume first that we have constructed,
somehow, the object class and the class class and we’ll use them to explain what
define-class does. As we do this, we’ll see that define-class invokes several
methods from the class class and the object class; we’ll show how each of these
methods is implemented. There is an inherent circularity in what we’re doing; after
all, how can we make a class for representations of classes before we have such a
class to represent itself with? In the penultimate subsection, we show how to use
bootstrapping to get around this circularity, and in the last subsection, we pull the
last (superficial) layer of mystery aside by explaining how define-class abbreviates
many normal definitions.

Overview

Before we delve into the implementation of the object-oriented programming system,
we should make clear what needs implementing. One of the primary interfaces we’ve
been using in the preceding sections is define-class; however, define-class is
really just a convenient abbreviation, not the fundamentals of what we need to
implement. In particular, evaluating a definition like

(define-class
’widget
object-class
’(size)
’(activate))

is really just a shorthand for evaluating the following sequence of definitions:

518 Chapter 14 Object-oriented Programming

(define widget-class (make-class ’widget
object-class
’(size)
’(activate)))

(define widget? (class/predicate widget-class))

(define make-widget (class/instantiator widget-class))

(define widget/get-size (class/getter widget-class ’size))

(define widget/set-size! (class/setter widget-class ’size))

(define widget/get-class (class/getter widget-class ’class))

(define widget/set-class! (class/setter widget-class ’class))

(define widget/activate (class/method widget-class ’activate))

(define widget^activate
(class/non-overridable-method widget-class ’activate))

(define widget/init (class/method widget-class ’init))

(define widget^init
(class/non-overridable-method widget-class ’init))

(define widget/describe (class/method widget-class ’describe))

(define widget^describe
(class/non-overridable-method widget-class ’describe))

In the ensuing subsections we’ll see how each of these pieces works; for exam-
ple, in looking at instance variables, we’ll see how class/getter produces the
getter for widget-class’s size instance variable, which winds up being called
widget/get-size. The machinery we will describe is housed in two fundamental
classes: object and class.

As we’ve remarked before, the object class is the root of the class hierarchy and so
is inherited from, directly or indirectly, by every class. It has one instance variable,
class, that is used to indicate which class the object belongs to. We can indicate
this fact, that each object knows which class it is an instance of, in a UML class
diagram as follows:

14.4 Implementing an Object-oriented Prog. System 519

object

* instances

class

1 class

Notice that there are two relationships between these fundamental classes. Each
class object is an object, so we have a subclass/superclass relationship between the
class class and the object class. However, each object is also associated with one
particular class, the class it is a direct instance of, so we have an association arrow as
well. The arrowhead is only on one end, indicating that the object knows its class,
but the class doesn’t know its instances. Next to the multiplicities, we’ve given a
name to each role in this association to help clarify the meaning of the association.
In particular, we show not just that each class object is associated with arbitrarily
many objects but also what those objects are: the instances of the class. Similarly,
the one class object associated with an arbitrary object is that object’s class.

When we earlier expanded the define-class to show what it was a shorthand for,
you could see that the widget class winds up with a getter and setter for the inherited
instance variable named class as well as for its own size instance variable. This
example illustrates a general pattern: Every class has getters and setters for all its
instance variables, whether inherited or newly added, and similarly for methods.
The object class also has two methods, which are inherited by all classes, namely
init and describe. We’ve already seen the special role that the init method plays
when a class is instantiated to construct a new object; we’ve also seen the use of the
describe method for debugging and exploration. As you can see from the preceding
definitions, the widget class winds up with these two methods and its own activate
method. Each method also has a non-overridable version, which is given a name
with a ^ in it, such as widget^init.

The class class is used for representations of classes. For example, widget-class
is an instance of the class class. These objects of the class class store the information
that is shared by the entire class, such as the names of the instance variables and
methods. Each class object (i.e., each instance of the class class) is made using
make-class. Once the class object is made, we use methods of the class class, such
as class/getter, to obtain the procedures to use with that class.

Instance Variables

Each object is represented simply as a vector containing its instance variable values.
To continue our running example, consider the widget class. Each widget has two
instance variables: class and size. Therefore, each widget will be represented as

520 Chapter 14 Object-oriented Programming

a two-element vector. The vector will contain the widget’s class instance variable
at position 0 and its size at position 1. Given this representation, it is easy to
see what getters and setters need to do. For example, if we wanted to produce
widget/get-size and widget/set-size! by hand, the definitions would look
like this:

(define widget/get-size
(lambda (object)
(vector-ref object 1)))

(define widget/set-size!
(lambda (object value)
(vector-set! object 1 value)))

One important aspect of object-oriented programming is that a class’s operations
(including getters and setters) can be used on any instance of that class including
instances of subclasses, sub-subclasses, etc. To do this, we will impose a very simple
constraint on the layout of the instance variables within the vector: The superclass’s
instance variables have to come first, in the same order as in the superclass. The
newly added instance variables come afterward, at the end of the vector. That is
why the class instance variable is at position 0 and the size instance variable at
position 1: The class instance variable is inherited from the object class and hence
had to come first.

As an example of where this approach would pay off, consider defining a subclass
of the widget class, perhaps called colorful-widget. It could have additional instance
variables, such as color, that would be stored in vector positions from 2 onward.
However, just like any other widget, the size would be stored in position 1. Thus
we can use the above widget/get-size on any widget, without needing to know
whether or not it is a colorful-widget or any other more specialized variety.

Of course, we don’t really want to write each getter and setter by hand; in-
stead we want to use class/setter and class/getter to do it for us. That way,
instead of defining widget/get-size using vector-ref and 1 as in the foregoing,
we could just do

(define widget/get-size (class/getter widget-class ’size))

We have class/getter find the correct vector position and then use it to produce
the specific getter procedure for us. We’ll do that as follows:

(class/set-method!
class-class ’getter
(lambda (this instvar-name)

14.4 Implementing an Object-oriented Prog. System 521

(let ((index (class/ivar-position this instvar-name)))
(lambda (object)
(vector-ref object index)))))

Notice that we are using object-oriented programming to build the object-oriented
programming system itself. In particular, getter is a method we are providing for
the class class. It in turn uses another method from the class class, class/ivar-
position, that is in charge of figuring out which vector position each instance vari-
able goes in. For example, it is class/ivar-position that figures out that the size
of a widget should go at position 1. We’ll put off defining class/ivar-position
until after we’ve seen how classes are created by make-class.

The preceding definition would work, so long as nobody ever applied a getter to an
object that wasn’t of the right class. However, if someone applied widget/get-size
to an object that wasn’t a widget, that person would get whatever instance variable
happened to be stored in position 1—perhaps the account number of a bank account
or the name associated with an employee record. To catch similar mistakes, we’d
prefer that widget/get-size were actually defined more like the following:

(define widget/get-size
(lambda (object)
(if (widget? object)

(vector-ref object 1)
(error "Getter applied to object not of correct class:"

’size ’widget))))

To have class/getter make such an improved getter for us, it is actually defined
as follows:

(class/set-method!
class-class ’getter
(lambda (this instvar-name)
(let ((index (class/ivar-position this instvar-name))

(ok? (class/predicate this)))
(lambda (object)
(if (ok? object)

(vector-ref object index)
(error
"Getter applied to object not of correct class:"
instvar-name (class/get-name this)))))))

The definition of class/setter is completely analogous, just using vector-set!
instead of vector-ref:

522 Chapter 14 Object-oriented Programming

(class/set-method!
class-class ’setter
(lambda (this instvar-name)
(let ((index (class/ivar-position this instvar-name))

(ok? (class/predicate this)))
(lambda (object value)
(if (ok? object)

(begin
(vector-set! object index value)
’set-done)

(error
"Setter applied to object not of correct class:"
instvar-name (class/get-name this)))))))

To summarize the most important points from this subsection:

1. Each object is represented as a vector storing the instance variable values.
2. The superclass’s instance variables come first, in the same order as in the super-

class.
3. Aside from error-checking, all a getter or setter does is a single vector-ref or

vector-set!.

Instantiators

As we saw in the preceding subsection, each object is represented as a vector. Thus
to a first approximation, we could write the widget class’s instantiator as follows:

(define make-widget
(lambda ()
(make-vector 2)))

However, two details are omitted here. First, if the new object is to truly be a widget,
its class instance variable needs to be set to the widget-class. Second, we need
to give the init method an opportunity to initialize the newly created widget. Thus,
a better second attempt at make-widget would be as follows:

(define make-widget
(lambda ()
(let ((instance (make-vector 2)))
(object/set-class! instance widget-class)
(object/init instance)
instance)))

14.4 Implementing an Object-oriented Prog. System 523

At this point, had we stuck with the non-error-checking design for setters in which
they only did a vector-set!, the make-widget procedure would work. But with
error-checking setters, object/set-class! will first use object? to verify that it
is really being passed an object (i.e., an instance of the object class). Unfortunately,
until the class is set, there is no way this test can succeed. So, our next version of
make-widget is as follows:

(define make-widget
(lambda ()
(let ((instance (make-vector 2)))
(unchecked-object/set-class! instance widget-class)
(object/init instance)
instance)))

The unchecked-object/set-class! procedure that this version uses is like our
first, crude widget/set-size! procedure. It can be written by hand and simply
sets vector location 0.

One final issue is worth addressing before we turn to automating the production of
class instantiators. Thus far we have assumed that make-widget takes no arguments.
But what if, in reality, we want to use it like (make-widget 1000)? In this case,
the make-widget procedure would have to accept the argument and pass it in
to object/init (after the instance) because, as we’ve seen in our prior object-
oriented programming, the init method actually processes any arguments to the
instantiator. Rather that adding a single argument in this way, we’ll allow any number
of arguments to be passed to the instantiator and from there to the init method,
using the special unparenthesized lambda-parameter notation (Section 10.3) and
apply:

(define make-widget
(lambda init-args
(let ((instance (make-vector 2)))
(unchecked-object/set-class! instance widget-class)
(apply object/init (cons instance init-args))
instance)))

Now all that remains is to automate the production of such instantiator procedures
using class/instantiator. We’ll assume that the class can find out how many
instance variables it has using class/get-num-ivars. With this assumption, we
can write

524 Chapter 14 Object-oriented Programming

(class/set-method!
class-class ’instantiator
(lambda (this)
(let ((num-ivars (class/get-num-ivars this)))
(lambda init-args
(let ((instance (make-vector num-ivars)))
(unchecked-object/set-class! instance this)
(apply object/init (cons instance init-args))
instance)))))

At this point, we’ve clarified how two features of classes work—instance vari-
ables, with their getters and setters, and instantiators, for creating objects that are
instances of a class. Of course, we’ve added some additional items to our agenda—
class/ivar-position and class/get-num-ivars now need explaining too. For
now, we’ll put these off and continue working through the features we originally
identified—methods, predicates, and class creation. Along the way, we’re sure to
discover yet more supporting machinery we need, and before we can declare our-
selves finished, we’ll need to have implemented not only the “official interface”
methods, like class/instantiator, but also the “behind the scenes” methods,
like class/ivar-position. This process of working from the external interface of
a class inward to the supporting mechanisms is a common occurrence in object-
oriented programming, no less so when the class we are programming is the class of
classes.

Methods

Although at this point we know how to make instances of a class and how to get and
set the instance variables contained within those instances, we’re still missing one of
the most fundamental ingredients of object-oriented programming: methods.

For efficient access, methods can be stored in vectors, just like instance variables
are; the primary difference is that one vector of methods is shared by an entire
class, whereas the instance variables are unique to each instance. Given a class,
we can get its method vector using class/get-method-vector. Then we simply
need to retrieve the particular method from the vector using vector-ref and apply
it. Putting it all together, here is an example of how widget/activate might be
written by hand:

(define widget/activate
(lambda (object)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
2)))

(method object))))

14.4 Implementing an Object-oriented Prog. System 525

Notice that we get the method from the method vector of the object’s class.
That way, if the object wasn’t a plain widget, but rather some special kind of wid-
get such as our hypothetical colorful-widget, we’d get the colorful-widget class’s
activate method, which might do something special. This approach contrasts
with widget^activate, which always gets the method from the widget-class’s
method vector, even if the particular object turns out to be a colorful-widget:

(define widget^activate
(let ((method-vector (class/get-method-vector widget-class)))
(lambda (object)
(let ((method (vector-ref method-vector 2)))
(method object)))))

We wait until widget^activate is used to retrieve the method from the method
vector so that the method can be changed using class/set-method!, which we’ll
see shortly.

We are making an assumption that underlies our ability to use widget/activate
on any kind of widget, even special widgets like colorful widgets. Namely, we rely on
all subclasses of widget-class to still use position 2 of the method vectors to store
their activate methods. In other words, just as with instance variables, the methods
whose names are inherited from the superclass need to be at the beginning of the
method vector, in the same order as in the superclass; methods whose names are
newly introduced come afterward. This explains how we knew that the activate
method would be in position 2 of the method vectors: positions 0 and 1 would be
occupied by the init and describe methods because those method names are
inherited from widget-class’s superclass, object-class.

At this point, we’ve shown how methods can be written by hand. We still need
to show how that process can be automated, and we still need to make a few
refinements. Also, we’ll need to show how methods are installed into the method
vectors using class/set-method!. Before proceeding with these topics, however,
we should point out that procedures such as the one named widget/activate aren’t
the real methods but act as though they were. When you apply widget/activate
to a widget, it retrieves the real method from the method vector and applies the real
method to the widget. Thus, the net effect is just as if the real method had been
applied in the first place. For this reason we call widget/activate a virtual method.

Exercise 14.23

How many vector-refs are done between the time when the virtual method
widget/activate is invoked and the time when the real method gets applied?
Explain. Be sure to count those done by procedures that widget/activate uses.
You may omit any that are used only for error-checking, however.

526 Chapter 14 Object-oriented Programming

Our first refinement will be to allow the activate method to take any number
of additional arguments, rather than just the widget being activated. In the following
procedure, args is a name for a list of all the additional arguments after the widget
being activated:

(define widget/activate
(lambda (object . args)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
2)))

(apply method (cons object args)))))

Next we’ll get rid of the explicit number 2 and instead use class/method-
position to find it for us:

(define widget/activate
(let ((index (class/method-position widget-class ’activate)))
(lambda (object . args)
(let ((method (vector-ref (class/get-method-vector

(object/get-class object))
index)))

(apply method (cons object args))))))

Now it is time for you to do some of the work.

Exercise 14.24

As a third refinement to widget/activate, make it check that it really is being
applied to a widget and signal an error if not, much as with widget/get-size.

Exercise 14.25

Rewrite widget^activate so it too benefits from these three refinements. That is,
it should accept additional arguments, use class/method-position rather than
the number 2, and verify that it is being applied to a widget.

Exercise 14.26

Automate the production of virtual methods like widget/activate and widget^
activate by writing the class/method and class/non-overridable-method
methods as procedure factories. For an example, you could look at class/getter.

14.4 Implementing an Object-oriented Prog. System 527

At this point we can retrieve and use methods, but we haven’t seen how they get
into method vectors in the first place. If you’ve been following carefully, you might
well think it could be done as follows:

(class/set-method!
class-class
’set-method!
(lambda (this method-name method)
(vector-set! (class/get-method-vector this)

(class/method-position this method-name)
method)))

This code is very nearly right. Before making the few refinements it needs, we should
point out that it brings us face-to-face with the bootstrapping problem that we’ll have
to solve eventually. We used class/set-method! to install into the class-class
its set-method! method—in other words, we used class/set-method! to install
itself. (This circularity is like trying to pull yourself up by your bootstraps, hence the
description of the problem as being a bootstrapping problem.) Clearly this circularity
will need to be addressed.

However, for now we’ll leave the circularity unaddressed and instead clean up a
detail. Namely, if we’re putting the activate method into the widget class’s method
vector, and the widget class has subclasses like colorful-widget, and those subclasses
don’t have their own overriding methods, the same method that is being installed into
the widget class’s method vector should be installed into the subclasses’ method vec-
tors as well. That’s how method implementations (as opposed to just method names)
get inherited. In fact, the same method might get installed into the method vectors
of sub-subclasses, sub-sub-subclasses, etc. Any class descended from widget-class
will get this method, unless an overriding method intervenes.

Installing method implementation in descendant classes requires several forms of
support. Most fundamentally, each class will need to know its subclasses. We’ll as-
sume that we can get a list of the subclasses of a class using class/get-subclasses.
When we look at how classes are created by make-class, we’ll see how the list of
subclasses is kept up to date. For the time being, we’ll record the availability of this
information in our UML class diagram:

object

* instances

class
* subclasses

0..1 superclass

1 class
{super/subclass associations
form a tree with object-class
as the root—the only class
with no superclass}

528 Chapter 14 Object-oriented Programming

This class diagram illustrates another feature of the UML notation, namely, the
ability to express a constraint that an association must satisfy. The constraint is
written next to the association in curly braces. Here we’ve recorded the fact that
the subclass relationship forms a tree. Starting from object-class and going to its
subclasses, then their subclasses, etc., we should reach every class eventually, without
ever reaching the same class a second time.

Another form of support we’ll need is some way to keep track of whether a
descendant class has its own overriding implementation of the method and hence
shouldn’t inherit the superclass’s. Therefore, we’ll give each class a second vector. In
addition to the method-vector, there will be a method-set?-vector containing
boolean values: True means the method has been directly set and hence shouldn’t
be inherited in, whereas false means that the superclass’s implementation is the only
one available. Using these, and a higher-order procedure for traversing the tree of
descendant classes, we arrive at the following:

(class/set-method!

class-class

’set-method!

(lambda (this method-name method)

(let ((index (class/method-position this method-name)))

(vector-set! (class/get-method-vector this)

index

method)

(vector-set! (class/get-method-set?-vector this)
index

#t)

(apply-below this

(lambda (class)

(vector-set! (class/get-method-vector class)

index

method))

(lambda (class)

(not (vector-ref (class/get-method-set?-vector

class)
index)))))

method-name))

(define apply-below

(lambda (class proc apply-to?)

(for-each (lambda (subclass)

(if (apply-to? subclass)

14.4 Implementing an Object-oriented Prog. System 529

(begin (proc subclass)

(apply-below subclass proc apply-to?))))
(class/get-subclasses class))))

Predicates

We need to design our class predicates so that, for example, widget? returns #t not
only when applied to a plain widget that is directly an instance of widget-class
but also when applied to a colorful widget that is an instance of some descendant
class of widget-class. Thus it will not suffice to simply check to see if the object’s
class is equal to widget-class.

One straightforward solution would be to get the object’s class, check for equality
with widget-class, and if unequal retrieve the class’s superclass and check again,
iterating up the class hierarchy until an ancestor equal to widget-class is found
or the top of the class hierarchy is reached. This approach would work, but it would
be our first operation in the whole object-oriented programming system that wasn’t
accomplished with some small fixed number of vector accesses. Instead, the deeper
the inheritance hierarchy, the slower the predicates would be. This is intolerably
inefficient if we are going to use the predicates on a precautionary basis before each
method invocation or instance variable access. Even if predicates were used more
sparingly, we should design them to take a constant number of steps, absent any
reason to the contrary.

For this design, we’ll focus on each class’s ancestry (i.e., the sequence of classes
starting with object-class and working down the hierarchy to the class in ques-
tion). We’ll call object-class the “level 0 ancestor,” the subclass of object-class
that is an ancestor of the class in question its “level 1 ancestor,” etc. In this termi-
nology, the widget? predicate should return #t for any object whose class has
widget-class as its level 1 ancestor. To test this condition efficiently, we simply
store the ancestry as a vector, use vector-ref to retrieve element 1, and test to see
whether it is equal to widget-class:

(define widget?

(lambda (object)

(let ((ancestry (class/get-ancestry (object/get-class object))))

(and (> (vector-length ancestry) 1)
(eq? (vector-ref ancestry 1)

widget-class)))))

Of course, we still need to ensure that the ancestry vectors really exist in each
class—we’ll address that when we turn to the construction of classes. For now, let’s
update our UML class diagram, as a reminder of this important design decision:

530 Chapter 14 Object-oriented Programming

object

* instances

class
* subclasses

0..1 superclass

1 class

{super/subclass associations
form a tree with object-class
as the root—the only class
with no superclass}

ancestry
{ordered} 1..*

1..*

{ancestry = object-class, ...,
superclass’s superclass,
superclass, this class}

The diagram shows a new notation, the special constraint horderedj. This notation
means that rather than each class being associated with an unordered set of one
or more ancestors, it has an ordered list of one or more ancestors—one specific
ancestor comes first, etc. We’ve also used the constraint notation to indicate what
the ancestors need to be. The first ancestor (level 0) needs to be object-class, and
the last ancestor needs to be the class whose ancestry this is. Immediately preceding
that comes the superclass, and before that comes the superclass’s superclass. The
implication is that the ancestry needs to be consistent with the superclass/subclass
association between classes.

The design of the widget? predicate just given has two flaws. First, it in-
vokes object/get-class and class/get-ancestry, which as precautions invoke
object? and class?, respectively. However, assuming that object? and class?
follow the same design as widget?, they will in turn invoke object/get-class and
class/get-ancestry. So, we’ll wind up with an infinite recursion. The second
flaw in widget?’s design is that no provision is made for the possibility that it might
be applied to a value that is not an object at all, as in (widget? 3).

Exercise 14.27

Write out the object? predicate that corresponds to the above widget? predicate.
Now trace out the details of the infinite recursion that occurs when it is used.

To provide some measure of foolproofing against predicates being applied to
nonobjects, we can test a number of additional consistency conditions. If all of these
consistency conditions hold, we can be relatively certain that we have a genuine
object and can test the original two conditions: that the ancestry vector is long
enough and that it has the widget-class as its element at position 1 (i.e., as
the level 1 ancestor). The following version of widget? embodies the additional
consistency checks to guard against nonobjects, although it still has the infinite
recursion problem:

14.4 Implementing an Object-oriented Prog. System 531

(define widget?

(let ((level (- (vector-length (class/get-ancestry widget-class))
1))

(min-length (class/get-num-ivars widget-class))

(min-class-length (class/get-num-ivars class-class)))

(lambda (object)

(and (vector? object)

(>= (vector-length object) min-length)

(let ((class (object/get-class object)))

(and (vector? class)

(>= (vector-length class) min-class-length)

(let ((a (class/get-ancestry class))
(size (class/get-num-ivars class)))

(and (number? size)

(= size (vector-length object))

(vector? a)

(eq? (vector-ref a

(- (vector-length a) 1))

class)

(> (vector-length a) level)

(eq? (vector-ref a level)

widget-class)))))))))

Exercise 14.28

Write out an English description of what each of the consistency checks is.

Exercise 14.29

Recall that the infinite recursion is due to the predicate using getters that them-
selves use predicates to do precautionary checking. The last time we had a problem
caused by precautionary checking in the normal getter or setter procedures was in
make-widget in the Instantiators subsection. Solve the infinite recursion problem
using the same approach as we used there.

Exercise 14.30

Using your widget? predicate as a starting point, write the class/predicate
method, which acts as a procedure factory for generating such predicate procedures.

532 Chapter 14 Object-oriented Programming

Making Classes

Classes are themselves instances of the class class, made using make-class. To see
what needs to be done to make a class, let’s review the instance variables that we have
come to assume each class has: name, subclasses, num-ivars, method-vector,
method-set?-vector, and ancestry. In addition, we’ve assumed the availability
of the ivar-position and method-position methods.

To support ivar-position and method-position, we’ll equip each class with
a table showing which vector position each instance variable is stored in and another
table showing which vector position each method is stored in. We’ll store each table
as simply a list of lists; for example, the list ((class 0) (size 1)) would be used
to show that class is in position 0 and size in position 1. Because these tables
associate a position with each name, they are conventionally called association lists
or simply alists. We’ll add two more instance variables to our above list of instance
variables the class class needs: ivar-alist and method-alist. These will hold
the two association lists. For convenience we’ll also add a num-methods instance
variable, paralleling num-ivars.

At this point, we can show a full definition for class-class:

(define class-class
(make-class ’class ; name

object-class ; superclass
’(name ; instance variables
subclasses
num-ivars
ivar-alist
num-methods
method-alist
method-vector
method-set?-vector
ancestry)

’(instantiator ; methods
predicate
getter
setter
method
non-overridable-method
set-method!
ivar-position
method-position)))

Of course, this again raises the bootstrapping issue of circularity: We just used
make-class, which makes an instance of the class class, to specify what the class

14.4 Implementing an Object-oriented Prog. System 533

class is. We’ll resolve this problem in the next subsection, which is devoted to
bootstrapping. For now, we at least have a human-readable description of the class
class.

The make-class procedure is simply the instantiator for the class class, obtained
using class/instantiator. As such, all it does is create an appropriately sized
vector, install class-class into element 0 of that vector, and then invoke the init
method to do all the real work. We can already sketch out most of what the init
method will need to do, simply by initializing each of the instance variables:

(class/set-method!

class-class ’init

(lambda (this class-name superclass instvar-names method-names)

(object^init this)

;; some code should go here to check that none of the new

;; instvar-names or method-names are already in use in the

;; superclass -- and if any are, to signal an error
(class/set-name! this class-name)

(class/set-subclasses! this ’())

(class/set-subclasses! superclass

(cons this

(class/get-subclasses superclass)))

(class/set-num-ivars! this (+ (class/get-num-ivars superclass)

(length instvar-names)))

(class/set-ivar-alist! this

;; some code needs to go here to

;; assign the positions for the instance
;; variables

)

(class/set-method-alist! this

;; some code needs to go here to

;; assign the positions for the methods

)

(let ((num-methods (+ (class/get-num-methods superclass)

(length method-names))))

(class/set-num-methods! this num-methods)

(let ((method-vector (make-vector num-methods)))
(class/set-method-vector! this method-vector)

(vector-copy! (class/get-method-vector superclass)

method-vector)

;;(continued)

534 Chapter 14 Object-oriented Programming

(for-each (lambda (method-name)

(vector-set! method-vector
(class/method-position this

method-name)

(lambda (object . args)

(error "Unimplemented method"

method-name))))

method-names))

(let ((method-set?-vector (make-vector num-methods)))

(class/set-method-set?-vector! this method-set?-vector)

(vector-fill! method-set?-vector #f)))

(let ((ancestry (make-vector (+ (vector-length
(class/get-ancestry superclass))

1))))

(class/set-ancestry! this ancestry)

(vector-copy! (class/get-ancestry superclass) ancestry)

(vector-set! ancestry

(- (vector-length ancestry) 1)

this))))

The above outline of class-class’s init method has two “holes” that need
to be filled in with code that computes alists, assigning positions for the instance
variables and methods. Recall that all the superclass’s instance variable or method
names need to be assigned the same positions as in the superclass, with the new
names assigned larger position numbers. Thus, a simple approach is to cons new
name/position associations onto the front of the superclass’s alists, starting with the
superclass’s number of instance variables or methods as the next available position
number. The following procedure handles this process of building onto an existing
alist:

(define alist-from-onto
(lambda (names num alist)
(if (null? names)

alist
(alist-from-onto (cdr names)

(+ num 1)
(cons (list (car names)

num)
alist)))))

Using this procedure, the two pieces of code we need to fill into the holes are as
follows:

14.4 Implementing an Object-oriented Prog. System 535

(alist-from-onto instvar-names
(class/get-num-ivars superclass)
(class/get-ivar-alist superclass))

and

(alist-from-onto method-names
(class/get-num-methods superclass)
(class/get-method-alist superclass))

With these filled in, the init method will now work; however, it won’t provide the
user with any error message if they pick a name for an instance variable or method
that is already in use from one of the ancestor classes. To provide this error-checking,
we need to check to see if any element of instvar-names or method-names
appears in the corresponding alist of the superclass. To check to see if a particular
name appears in the alist, we can use the built-in procedure assq, which searches
the alist for a particular name and returns the first pair that has that name as its car
or returns #f if the name isn’t found. For example,

(assq ’size ’((class 0) (size 1)))
(size 1)

(assq ’color ’((class 0) (size 1)))
#f

This procedure makes checking for erroneously reused names fairly straightforward.

Exercise 14.31

Write the error-checking (and reporting) code.

The only remaining features of the class class we need to implement are the
ivar-position and method-position methods. These methods can also be
straightforwardly written using assq:

(class/set-method!
class-class ’ivar-position

(lambda (this ivar-name)

(let ((lookup (assq ivar-name (class/get-ivar-alist this))))

(if lookup

(cadr lookup)

(error "instance variable name not present in class"

ivar-name (class/get-name this))))))

536 Chapter 14 Object-oriented Programming

(class/set-method!

class-class ’method-position
(lambda (this method-name)

(let ((lookup (assq method-name (class/get-method-alist this))))

(if lookup

(cadr lookup)

(error "method name not present in class"

method-name (class/get-name this))))))

The class class’s init method in turn invokes the object class’s init method,
using object^init. This is just another example of our general practice of having
each class’s init give the superclass’s init a chance to do any initializing it needs
to. As it happens, there is no initializing to do in the object class, so we simply write
a place holder:

(class/set-method!
object-class ’init
(lambda (this) ’done))

The next two subsections address the bootstrapping problem and the question of
how the define-class abbreviation is expanded. Other than these issues, all we
have omitted from our description of the object-oriented programming system are the
features used for debugging and exploration: the object class’s describe method,
the class class’s overriding describe method, and the show-class-hierarchy
procedure. The material above, showing how classes and objects are structured,
provides the information you would need to write these debugging tools.

Exercise 14.32

Either write the debugging tools, or write English explanations of our definitions of
them, which you can find in the complete version of the object-oriented program-
ming system that is on the web site for this book.

Bootstrapping

Having thus far ignored the circularities inherent in using the object-oriented pro-
gramming system to implement itself, we now are faced with the following problems:

1. The class-class can’t possibly be made using make-class because what
make-class does is to instantiate class-class.

14.4 Implementing an Object-oriented Prog. System 537

2. The object-class can’t be made using make-class either. Not only does
the same circularity issue apply (because make-class would be trying to cre-
ate object-class by instantiating one of its subclasses, class-class), but in
addition object-class has no superclass.

3. Many of the getters, setters, and methods of object-class and class-class
can’t be obtained in the usual way, using class/getter, class/setter, and
class/method, because of circularity problems. For example, class/method
clearly can’t be used to get the method method of the class-class, because
that would mean it was being used to get itself.

The simplest approach to the problem of creating class-class is simply to build
it “by hand” as a 10-element vector (because there are 10 instance variables) with
the appropriate contents:

(define class-class

(vector ’class-class-goes-here

’class ; name

’() ; subclasses
10 ; num-ivars

’((class 0) ; ivar-alist (These position numbers must

(name 1) ; be matched by the actual positioning

(subclasses 2) ; of the items in this class-class vector

(num-ivars 3) ; as well as the ones in the object-class

(ivar-alist 4) ; vector below.)

(num-methods 5)

(method-alist 6)

(method-vector 7)

(method-set?-vector 8)
(ancestry 9))

11 ; num-methods

’((init 0) ; method-alist

(describe 1)

(instantiator 2)

(predicate 3)

(getter 4)

(setter 5)

(method 6)

(non-overridable-method 7)
(set-method! 8)

(ivar-position 9)

(method-position 10))

;;(continued)

538 Chapter 14 Object-oriented Programming

(make-vector 11) ; method-vector

(make-vector 11) ; method-set?-vector
(make-vector 2))) ; ancestry

Of the 10 positions in this vector, one of them needed to be temporarily filled in
with a place holder rather than the real value: Position 0 is supposed to be the class
of which the object is an instance, but in the case of class-class, it is an instance
of itself. Thus, we put the placeholder ’class-class-goes-here in the preceding
and now can fix it:

(unchecked-object/set-class! class-class class-class)

At this point, the class-class has been constructed, but the vectors it contains—its
method-vector, method-set?-vector, and ancestry—still need to be filled in.
We’ll take care of that later.

The object-class can be constructed analogously:

(define object-class
(vector class-class ; class

’object ; name
(list class-class) ; subclasses
1 ; num-ivars
’((class 0)) ; ivar-alist
2 ; num-methods
’((init 0) ; method-alist
(describe 1))

(make-vector 2) ; method-vector
(make-vector 2) ; method-set?-vector
(make-vector 1))) ; ancestry

Now we can move on to the getters and setters. For these, we’ll write quick-and-
dirty versions of those actually needed during the bootstrapping process, and then
once the bootstrapping is over, we can (re)define them all the normal way, using
class/getter and class/setter. That will fill in all the ones we skipped over
because they weren’t needed for bootstrapping, and moreover it will replace all our
quick-and-dirty versions (i.e., ones without error-checking) with the normal versions
with error-checking. For example, to fill in the above two classes’ ancestry vectors,
we need class/get-ancestry, so we’ll define it as follows:

(define class/get-ancestry (lambda (obj) (vector-ref obj 9)))

14.4 Implementing an Object-oriented Prog. System 539

Note that the number 9 needs to match the position given in the instance variable
alist that is part of class-class. The other getters and setters we need can be
defined similarly.

Once these are in place, we can fill in some missing details in the classes to show
that no methods have been set yet and to show the correct ancestries:

(vector-fill! (class/get-method-set?-vector object-class) #f)

(vector-fill! (class/get-method-set?-vector class-class) #f)

(vector-set! (class/get-ancestry object-class)
0
object-class)

(let ((a (class/get-ancestry class-class)))
(vector-set! a 0 object-class)
(vector-set! a 1 class-class))

Once the two fundamental classes are constructed and the necessary getters and
setters are jury-rigged, we can set to work defining the various methods. However,
we again run into some circularity problems. For example, we can’t very well use
class/set-method! to install itself, can we? Well, we actually can, if we do it
carefully, as follows:

(define class/method-position ; temporary real, later replaced
(lambda (this method-name) ; with virtual
(let ((lookup (assq method-name

(class/get-method-alist this))))
(if lookup

(cadr lookup)
(error "method name not present in class"

method-name (class/get-name this))))))

(define class/set-method! ; temporary real, later replaced
(lambda (this method-name method) ; with virtual
(let ((index (class/method-position this method-name)))
(vector-set! (class/get-method-vector this)

index
method)

(vector-set! (class/get-method-set?-vector this)
index
#t)

;;(continued)

540 Chapter 14 Object-oriented Programming

(apply-below this
(lambda (class)
(vector-set! (class/get-method-vector class)

index
method))

(lambda (class)
(not (vector-ref

(class/get-method-set?-vector class)
index)))))

method-name))

(class/set-method! class-class ’method-position
class/method-position)

(class/set-method! class-class ’set-method!
class/set-method!)

; similarly for other methods, including class/method

(define class/method-position
(class/method class-class ’method-position))

(define class/set-method!
(class/method class-class ’set-method!))

; and so forth

You’ll notice that the name class/set-method! is temporarily defined to be the
specific real method rather than the virtual method. If we had any subclasses of
class-class during the bootstrapping process, this definition would be a problem,
but we don’t. Once the bootstrapping is complete, we redefine class/set-method!
to be the virtual method, which is obtained in the usual way.

The three preceding techniques are all it takes to get the object-oriented pro-
gramming system off the ground: hand construction of the class-class and
object-class vectors, hand construction of temporary versions of some getters and
setters, and temporary definition of method names such as class/set-method!
and class/method to be the real methods rather than the virtual ones. If you want
to see all the details, such as exactly which getters and setters need to be provided by
hand, you can look at the full implementation of the object-oriented programming
system, which is on the web site for this book. (Or, you could work it out for yourself.)

14.4 Implementing an Object-oriented Prog. System 541

Define-Class

At this point we have a working object-oriented programming system but not one
that is very pleasant to use because for each class we need to first make the class
using make-class, then get its instantiator using class/instantiator, then its
predicate using class/predicate, and then all its getters and setters and methods.

The solution, which we employed in our earlier object-oriented programming, is
to use define-class as an abbreviation for this tedious list of definitions. Although
this is just a superficial abbreviation of many definitions by one definition, it is worth
understanding, and so in this subsection we’ll look at the mechanism that is used.

We can implement define-class using a two-step process: First the definitions
for the class are computed, and then those definitions are evaluated “globally,” that
is, as though they had been typed in:

(define define-class
(lambda (class-name superclass instvar-names method-names)
(eval-globally
(class-definitions
class-name superclass instvar-names method-names))))

This code still leaves the problems of writing class-definitions, which produces
the long list of definitions for a class, and eval-globally, which makes those
definitions take effect.

To write class-definitions, we’ll need some way of “gluing together” symbols
so that we can take a class name, such as widget and glue make- onto the front
to make the instantiator name make-widget or glue a ? onto the end to make the
predicate name widget? or glue / and the method name activate onto the end to
make the name widget/activate, etc. We can write a procedure to do this gluing
together, which we’ll call symbol-append. Here are some examples of symbol-
append in use:

(symbol-append ’make- ’widget)
make-widget

(symbol-append ’widget ’/ ’activate)
widget/activate

We can write symbol-append in terms of some built-in procedures: symbol->
string, for converting the symbols to strings; string-append, for gluing the strings
together; and string->symbol for converting the result back into a symbol. Here
is the definition:

542 Chapter 14 Object-oriented Programming

(define symbol-append
(lambda symbols
(string->symbol
(apply string-append

(map symbol->string symbols)))))

Now that we have this tool in hand, writing class-definitions is simply a
large amount of relatively boring list-construction code. As an example of one little
piece of it, consider the following definition:

(define class-predicate-definition
(lambda (class-name)
(list ’define (symbol-append class-name ’?)

(list ’class/predicate
(symbol-append class-name ’-class)))))

If we apply that procedure to the class name widget, we get the definition that
would need to be evaluated in order to define widget?:

(class-predicate-definition ’widget)
(define widget? (class/predicate widget-class))

All the definitions that the define-class is abbreviating can be produced simi-
larly. The various definitions can then be packaged together by wrapping them in a
list starting with begin, as in

(begin

(define widget-class ...)

(define make-widget ...)

(define widget? ...)

...)

If you want to see the full, tedious code for generating the necessary definitions
as lists, you can find it in the full version of the object-oriented programming system
that is on the web site for this book. However, the previous sample should suffice to
indicate the general mechanism by which class-definitions works.

Now that the definitions have been produced as a list structure, the remaining
problem is how to make the Scheme system process those definitions; this is the
job of eval-globally. Most Scheme systems have an eval-globally procedure
already built in, but typically it is under a different name. For example, it might
just be called eval, in which case all you need to do is (define eval-globally
eval). However, the R4RS standard for Scheme doesn’t specify any version of
this procedure at all. Therefore, the system-independent version of our software
takes a somewhat more roundabout approach, but one that works in nearly any

14.5 An Application: Adventures in the Land of Gack 543

Scheme system. Namely, eval-globally writes the definitions out to a file called
evaltemp.scm and then does (load "evaltemp.scm") to load the file in. Because
the R4RS standard specifies both the mechanisms necessary for writing to a file and
for loading a file in, the only problem that may arise is with the choice of the
filename.

As before, if you are interested in the details, we invite you to look at the definition
of eval-globally in the full version of the object-oriented programming system
that we distribute. (The web site also has versions that have been tailored to specific
Scheme systems.)

14.5 An Application: Adventures in the Imaginary Land of Gack

Although object-oriented programming is now used for developing every imaginable
kind of software, its historical roots are in the development of simulation systems, in
which the software’s objects are used to model the interactions between the real-world
objects being simulated. Simulations are used for many practical purposes, such as
studying the effectiveness of emergency preparedness plans without needing a real
emergency. However, this category of software has also begotten a derivative category
with no more practical purpose than having fun: adventure games. In an adventure
game, the simulation is of a fantasy world and the characters inhabiting it. Typically
the player of the game controls one character, and the others are automated. As fun
as adventure games can be to play, they are nowhere near as fun to play as they are to
construct because in their construction you can exercise unbounded creativity. In this
section we’ll give you the opportunity to exercise your own creativity in constructing
a simulated world for an adventure game, using object-oriented programming as the
underlying technology.

We obtained the idea of using an adventure game to illustrate object-oriented
programming from Harold Abelson and Gerald Jay Sussman, who together with their
colleagues at MIT developed an adventure game in Scheme for use in their course,
Structure and Interpretation of Computer Programs. Their game was designed to
have places and characters that would be familiar to their students at MIT, and our
game started its life simply as an attempt to relocate to places and characters that
would be more familiar to our own students. Since then it has evolved, both in terms
of the underlying technology and, to a lesser extent, the game, to become increasingly
dissimilar from the MIT game. We nonetheless owe a great debt to Abelson, Sussman,
and the rest of the MIT team because the game is still recognizably theirs at heart.
We use it here with their permission. We would also like to encourage others to
engage in the same sort of “localization” we did; rather than just adding on to the
base set of locations and characters we provide, how about completely replacing
them with ones more familiar to you or more to your own imaginative taste?

Our game, which we call Adventures in the Imaginary Land of Gack, has three
major components. The most important of these is a hierarchy of classes for rep-

544 Chapter 14 Object-oriented Programming

resenting people, places, and things. Subclassing is used to achieve many of the
special effects of the game, for example, special kinds of automated people who
behave differently than normal automated people do. The second component of
the game is the particular world, the Land of Gack, which is produced simply by
creating specific instances of the various classes, such as a specific automated person
named Max, and establishing the relationships between them, such as positioning
Max in the offices. The third and final component of the game is a user interface,
which allows the player to interact with the game; this component is based on the
pattern/action idea that we first introduced in the movie query system.

In contrast to most of the prior chapters’ application sections, in which we’ve
chosen to jointly develop an application program with our readers by alternating
between portions we supply and exercises for the readers, in this section we present
a complete version of the adventure game and then call upon you to extend it
in whatever directions suit your fancy (after studying our version, which includes
playing it, of course). We provide some suggestions, but they are just starting points.

The class hierarchy portion of our game can be seen in overview most easily by
loading it in and then evaluating (show-class-hierarchy). If you do this, you’ll
see the following output:

object

registry

named-object

thing

scroll

place

person

auto-person

wizard

witch

class

We can also draw a UML class diagram of this hierarchy, as in Figure 14.1. As you
can see, there are two “top-level” classes in the game: registry and named-object. The
named-object class clearly plays an important role in that its subclasses are used for
representing all the things, places, and persons in the simulated Land of Gack. What
these have in common is that they have names. You can also see that we’ve provided
a specialized kind of person, the auto-person, for the characters that are controlled by
the program rather than by the player. These characters can all act, although some
of them act differently than others. In particular, there are wizards and witches with
distinctive behavior patterns. Similarly there could be things or places that behave
in supernormal ways. We’ve left most of those possibilities unexplored (leaving them
for you) but provide a simple illustration with a special kind of thing, scrolls that can
be read.

14.5 An Application: Adventures in the Land of Gack 545

registry named-
object

object

thingperson place

scrollauto-
person

witch wizard

Figure 14.1 The class hierarchy for the Land of Gack

We’ll return to the named-object class and its various descendants in more detail
shortly, but first we should explain the one other class, the registry class. This class is
used to create a single object that serves as a central registry of all the auto-persons
who are roaming the Land. To preserve this property, whenever an auto-person is
created, the auto-person/init method registers it with the registry. When an
auto-person becomes no longer free to act (because a witch turned the auto-person
into a frog—more on that later), the auto-person is removed from the registry. The
registry is used to give all the automated characters a chance to act after each action
taken by the player. This makes important use of the generic operations inherent in
object-oriented programming. The registry goes down its list of auto-persons applying
auto-person/maybe-act to each of them in a uniform way, without needing to
know or care that some might be witches or wizards. Yet the appropriate kind of
action is triggered in each case.

Before we continue with our description of the registry class, we really should
take a moment to update our UML class diagram with the new association we have
identified between the registry class and the auto-person class. While we’re at it,
we’ll give you a sneak preview (or overview) of the remaining associations by putting
them in Figure 14.2 as well. You should be able to look over the diagram and make
some sense of it. For example, you can see that there is a bidirectional association
between the person and thing classes, whereby each person knows the things that
are its possessions, and conversely each thing knows its owner, if any. Each person
also knows its place, and the place knows its contents. One new notation is used

546 Chapter 14 Object-oriented Programming

registry named-
object

object

thingperson place

scrollauto-
person

witch wizard

owner
0..1

*
possessions

0..1

*

* 1

* contents

0..1

direction

neighbor
0..1

{a person’s place’s contents
contains that person and all
their possessions}

*

Figure 14.2 The Land of Gack class diagram, including associations

for the neighbor relationship between places. A box labeled “direction” is on the
side of the place class, with an arrow back to the place class. This notation means
that starting from a particular place object, and given a particular direction, we can
then get to the neighboring place in that direction—except that there might not be
any neighbor in that direction, a contingency we are warned of by the multiplicity
of 0..1.

Having seen the overview diagram, we can look at the individual classes in more
detail. To start with, let’s return to the registry class. We’ll give the registry methods
for adding and removing an auto-person, a method for triggering all the auto-persons,
and finally a method for repeatedly triggering all the auto-persons, with the repetition
count specified by an argument. This last method, trigger-times, provides a
convenient way for the game to provide variable difficulty levels because it allows
for a faster-paced game in which each auto-person gets multiple opportunities to act
after each action of the player. The code is as follows:

(define-class
’registry
object-class
’(list)
’(add
remove
trigger
trigger-times))

14.5 An Application: Adventures in the Land of Gack 547

(class/set-method!
registry-class ’init
(lambda (this)
(object^init this)
(registry/set-list! this ’())))

(class/set-method!
registry-class ’add
(lambda (this person)
(registry/set-list! this

(cons person
(registry/get-list this)))))

(class/set-method!
registry-class ’remove
(lambda (this person)
(registry/set-list! this

(delq person
(registry/get-list this)))))

(class/set-method!
registry-class ’trigger
(lambda (this)
(for-each auto-person/maybe-act

(registry/get-list this))))

(class/set-method!
registry-class ’trigger-times
(lambda (this n)
(if (> n 0)

(begin (registry/trigger this)
(registry/trigger-times this (- n 1)))

’done)))

The remove method relies on a procedure called delq. This procedure takes an
object and a list and returns a new list that looks like the old one with all occurrences
of the object removed from it. We can define delq as follows:

(define delq
(lambda (item list)
(filter (lambda (x)

(not (eq? x item)))
list)))

548 Chapter 14 Object-oriented Programming

Now we can move on to the named-object class and its descendants, which are
used to model persons, places, and things from the Land of Gack. These objects use
instance variables to keep track of their relationships; for example, a person has a list
of the things it possesses. Because each thing also has an instance variable recording
the person who owns it, this portion of the game also provides a good reinforcement
of the importance of representation invariants as always-preserved consistency con-
ditions. Clearly one invariant property must be that the person objects’ possession
lists and the things’ owner instance variables remain in agreement; whenever the
owner of a thing is changed, the thing must be removed from one person’s list of
possessions and added to the other’s. Similar considerations apply elsewhere in the
design as well. For example, each person object knows what place the person is in,
and each place knows what persons (and things) are in it.

We maintain these consistency constraints by identifying one of the partners in
each relationship as being “in charge.” In particular, we will designate persons as
being in charge of the things they own and places they are in. Therefore when a
person takes or loses a thing, it will tell the thing to change its owner, and when
a person moves from place to place, it will tell the places to update their lists of
contents. The reverse arrangement would have also been possible, in which (for
example) when a thing changed its owner, it told the persons involved to update
their lists of possessions. However, having decided which object is in charge, we
simply need to initiate all changes through that object, leaving it to update the
subordinate partner object.

The named-object class itself is quite simple because it captures only the notion
that the object has a name, which can potentially be changed:

(define-class
’named-object
object-class
’(name)
’(name
change-name))

(class/set-method!
named-object-class ’init
(lambda (this name)
(object^init this)
(named-object/set-name! this name)))

(class/set-method!
named-object-class ’name
(lambda (this)
(named-object/get-name this)))

14.5 An Application: Adventures in the Land of Gack 549

(class/set-method!
named-object-class ’change-name
(lambda (this new-name)
(named-object/set-name! this new-name)))

Of the subclasses of named-object-class, the simplest is the class for things
because all that distinguishes a plain thing (other than its name) is who owns it. The
owner is normally a person object but can also be the symbol no-one, in which case
the owned? predicate returns false. Initially a thing is owned by no one, but it can
become owned by a person or become unowned again:

(define-class
’thing
named-object-class
’(owner)
’(owned?
owner
become-unowned
become-owned-by))

(class/set-method!
thing-class ’init
(lambda (this name)
(named-object^init this name)
(thing/set-owner! this ’no-one)))

(class/set-method!
thing-class ’owned?
(lambda (this)
(not (equal? (thing/owner this)

’no-one))))

(class/set-method!
thing-class ’owner
(lambda (this)
(thing/get-owner this)))

(class/set-method!
thing-class ’become-unowned
(lambda (this)
(thing/set-owner! this ’no-one)))

550 Chapter 14 Object-oriented Programming

(class/set-method!
thing-class ’become-owned-by
(lambda (this person)
(thing/set-owner! this person)))

A scroll is simply a thing that can be read. (Its name is the title of the scroll.)
A normal scroll is pretty boring to read, but we are including scrolls in the game
primarily so that you can add subclasses that behave more interestingly when read.
Here is the scroll class:

(define-class
’scroll
thing-class
’()
’(be-read))

(class/set-method!
scroll-class ’init
(lambda (this title)
(thing^init this title)))

(class/set-method!
scroll-class ’be-read
(lambda (this)
(let ((owner (scroll/owner this))

(title (scroll/name this)))
(if (scroll/owned? this)

(person/say owner
(list "I have read" title))

(display-message (list "No one has" title))))))

As you can see, although normal scrolls may not do anything very exciting when
read, even the little that they do accomplish requires some moderately interesting
machinery. In particular, we have a good example of an object’s method invoking a
method on a related object—the scroll asks its owner to say that he or she has read
the scroll. That way, if some people have unusual ways of speaking, when they read
a scroll, they will report having done so in their own peculiar way. Because only a
scroll’s owner is allowed to read it, we report any attempt to read an unowned scroll.
This reporting is done using a display-message procedure that takes a list of items
(such as strings or symbols) to display; it is defined as follows:

14.5 An Application: Adventures in the Land of Gack 551

(define display-message
(lambda (list-of-stuff)
(newline)
(for-each (lambda (s) (display s) (display " "))

list-of-stuff)))

The place class represents the places in the Land of Gack, or “rooms” as they are
frequently called by adventure gamers, whether they are actually rooms or not. Each
place has a list of contents, which are the things and persons that are at the place, and
has the ability to gain or lose such an item (when they arrive or leave). Each place
also has a neighbor-map, which is a list of pairs used as an association list, associating
each exit direction with the neighboring place in that direction. For example, if a
pair in the list has the symbol up as its car, the cdr is the place object that one would
arrive at by going up. This information regarding the spatial connections between
places can be accessed via a number of different methods. The exits method simply
returns the list of valid direction symbols (such as up). The neighbors method, in
contrast, supplies a list of the actual neighboring places. Finally, one can determine
which neighbor is in a particular direction using neighbor-towards or add a
new neighbor in a particular direction using add-new-neighbor. The class and its
methods are as follows:

(define-class
’place
named-object-class
’(neighbor-map ; pairs: car = direction, cdr = neighbor
contents) ; people and things

’(exits
neighbors
neighbor-towards
add-new-neighbor
gain
lose
contents))

(class/set-method!
place-class ’init
(lambda (this name)
(named-object^init this name)
(place/set-neighbor-map! this ’())
(place/set-contents! this ’())))

552 Chapter 14 Object-oriented Programming

(class/set-method!
place-class ’exits
(lambda (this)
(map car (place/get-neighbor-map this))))

(class/set-method!
place-class ’neighbors
(lambda (this)
(map cdr (place/get-neighbor-map this))))

(class/set-method!
place-class ’neighbor-towards
(lambda (this direction)
(let ((p (assq direction

(place/get-neighbor-map this))))
(if (not p)

#f
(cdr p)))))

(class/set-method!
place-class ’add-new-neighbor
(lambda (this direction new-neighbor)
(let ((neighbor-map (place/get-neighbor-map this)))
(if (assq direction neighbor-map)

(display-message
(list "there is already a neighbor"

direction
"from"
(place/name this)))

(place/set-neighbor-map! this
(cons (cons direction

new-neighbor)
neighbor-map))))))

(class/set-method!
place-class ’gain
(lambda (this new-item)
(let ((contents (place/contents this)))
(if (memq new-item contents)

(display-message
(list (named-object/name new-item)

;;(continued)

14.5 An Application: Adventures in the Land of Gack 553

"is already at"
(place/name this)))

(place/set-contents! this
(cons new-item contents))))))

(class/set-method!
place-class ’lose
(lambda (this item)
(let ((contents (place/contents this)))
(if (not (memq item contents))

(display-message
(list (named-object/name item)

"is not at"
(place/name this)))

(place/set-contents! this
(delq item contents))))))

(class/set-method!
place-class ’contents
(lambda (this)
(place/get-contents this)))

The most interesting of the various kinds of named objects are the persons. They
have a variety of methods intended for internal use within the game but also methods
that, in effect, are directly used by the human player of the game. Strictly speaking,
these are used by the user interface component of the game. For example, when
the player types in to the user interface the command (go north), the effect is the
same as if the user had evaluated the expression (person/go player ’north),
although actually the user interface evaluated it on the user’s behalf.

The person class and its methods follow. The methods make use of a utility
procedure that we define afterward, verbalize-list, which turns a list of items into
a spoken form by inserting “and” between consecutive words and using a specified
replacement if there are no items. In reading the methods below, remember that the
person class is “in charge” of its reciprocal relationships with things and places and
hence needs to keep those up to date. The code is as follows:

(define-class
’person
named-object-class
’(place
possessions)

;;(continued)

554 Chapter 14 Object-oriented Programming

’(say
look-around
list-possessions
read
have-fit
move-to
go
take
lose
place
possessions
greet
other-people-at-same-place))

(class/set-method!
person-class ’init
(lambda (this name place)
(named-object^init this name)
(person/set-place! this place)
(person/set-possessions! this ’())
(place/gain place this)))

(class/set-method!
person-class ’say
(lambda (this list-of-stuff)
(let ((name (person/name this))

(place (person/place this)))
(let ((place-name (place/name place)))
(display-message
(append (list "At" place-name ":" name "says --")

list-of-stuff))))))

(class/set-method!
person-class ’look-around
(lambda (this)
(let ((place (person/place this)))
(let ((other-items

(map named-object/name
(delq this

(place/contents place))))
(exits (place/exits place)))

;;(continued)

14.5 An Application: Adventures in the Land of Gack 555

(person/say this
(append ’("I see")

(verbalize-list other-items "nothing")
’("and can go")
(verbalize-list exits "nowhere")))))))

(class/set-method!
person-class ’list-possessions
(lambda (this)
(let ((stuff (map thing/name

(person/possessions this))))
(person/say
this
(append ’("I have")

(verbalize-list stuff "nothing"))))))

(class/set-method!
person-class ’read
(lambda (this scroll)
(if (eq? this (scroll/owner scroll))

(scroll/be-read scroll)
(display-message
(list (person/name this)

"does not have"
(scroll/name scroll))))))

(class/set-method!
person-class ’have-fit
(lambda (this)
(person/say this ’("Yaaaah! I am upset!"))))

(class/set-method!
person-class ’move-to
(lambda (this new-place)
(let ((name (person/name this))

(old-place (person/place this))
(possessions (person/possessions this)))

(display-message
(list name "moves from" (place/name old-place)

"to" (place/name new-place)))
(place/lose old-place this)
;;(continued)

556 Chapter 14 Object-oriented Programming

(place/gain new-place this)
(for-each (lambda (p)

(place/lose old-place p)
(place/gain new-place p))

possessions)
(person/set-place! this new-place)
(person/greet this

(person/other-people-at-same-place this)))))

(class/set-method!
person-class ’go
(lambda (this direction)
(let ((old-place (person/place this)))
(let ((new-place (place/neighbor-towards

old-place
direction)))

(if new-place
(person/move-to this new-place)
(display-message
(list "you cannot go" direction "from"

(place/name old-place))))))))

(class/set-method!
person-class ’take
(lambda (this thing)
(if (eq? this (thing/owner thing))

(display-message
(list (person/name this) "already has" (thing/name thing)))
(begin
(if (thing/owned? thing)

(let ((owner (thing/owner thing)))
(person/lose owner thing)
(person/have-fit owner))

’unowned)
(thing/become-owned-by thing this)
(person/set-possessions!
this
(cons thing (person/possessions this)))
(person/say
this
(list "I take" (thing/name thing)))))))

14.5 An Application: Adventures in the Land of Gack 557

(class/set-method!
person-class ’lose
(lambda (this thing)
(if (not (eq? this (thing/owner thing)))

(display-message (list (person/name this) "doesn’t have"
(thing/name thing)))

(begin
(thing/become-unowned thing)
(person/set-possessions!
this
(delq thing (person/possessions this)))
(person/say
this
(list "I lose" (thing/name thing)))))))

(class/set-method!
person-class ’place
(lambda (this)
(person/get-place this)))

(class/set-method!
person-class ’possessions
(lambda (this)
(person/get-possessions this)))

(class/set-method!
person-class ’greet
(lambda (this people)
(if (not (null? people))

(person/say this
(cons "Hi"

(verbalize-list
(map person/name people)
"no one")))

’no-one-to-greet)))

(class/set-method!
person-class ’other-people-at-same-place
(lambda (this)
(delq this

(filter person?
(place/contents (person/place this))))))

558 Chapter 14 Object-oriented Programming

The verbalize-list utility procedure used by the person class is as follows:

(define verbalize-list
(lambda (items none-word)
(define loop
(lambda (items)
(if (null? (cdr items))

items
(cons (car items)

(cons "and"
(loop (cdr items)))))))

(if (null? items)
(list none-word)
(loop items))))

The player of the game controls a normal person, but all the remaining characters
are automatically triggered by the registry and so are instances—at least indirectly—
of the auto-person class. What distinguishes the auto-person class is that it has a
method maybe-act for use by the registry. Each auto-person has some frequency
with which it acts that is controlled using a threshold to which its “restlessness” has
to rise before it acts. Each time the maybe-act method is invoked, it checks to see if
the threshold has been reached, and if not, increases the restlessness by 1. When the
restlessness reaches the threshold, the maybe-act method in turn invokes the act
method, to trigger the automated person’s behavior, and then resets the restlessness
to zero. Normal auto-persons act by moving to a randomly chosen adjoining room,
but there are subclasses that have more interesting act methods. The auto-person
class and its methods are given below; note that the auto-person is in charge of its
relationship with the registry.

(define-class
’auto-person
person-class
’(threshold
restlessness)

’(maybe-act
act))

(class/set-method!
auto-person-class ’init
(lambda (this name place threshold)
(person^init this name place)
;;(continued)

14.5 An Application: Adventures in the Land of Gack 559

(auto-person/set-threshold! this threshold)
(auto-person/set-restlessness! this 0)
(registry/add registry this)))

(class/set-method!
auto-person-class ’maybe-act
(lambda (this)
(let ((threshold (auto-person/get-threshold this))

(restlessness (auto-person/get-restlessness this)))
(if (< restlessness threshold)

(auto-person/set-restlessness! this
(+ 1 restlessness))

(begin (auto-person/act this)
(auto-person/set-restlessness! this 0))))))

(class/set-method!
auto-person-class ’act
(lambda (this)
(let ((new-place (random-element

(place/neighbors
(auto-person/place this)))))

(if new-place
(auto-person/move-to this new-place)))))

(define random-element
(lambda (list)
(if (null? list)

#f
(list-ref list (random (length list))))))

We’ve provided two subclasses of the auto-person-class with more interesting
act methods. The witch class has the special behavior that when there is someone
else in the room with the witch when she acts, she curses the person. (Otherwise
she acts just like any other auto-person.) The wizard, on the other hand, is basically
a scroll collector. The two classes, with their methods, follow:

(define-class
’witch
auto-person-class
’()
’(curse))

560 Chapter 14 Object-oriented Programming

(class/set-method!
witch-class ’act
(lambda (this)
(let ((victim (random-element

(witch/other-people-at-same-place this))))
(if victim

(witch/curse this victim)
(auto-person^act this)))))

(class/set-method!
witch-class ’curse
(lambda (this person)
(let ((person-name (person/name person)))
(person/say this

(list
"Hah hah hah, I’m going to turn you into a frog"
person-name))

(turn-into-frog person)
(person/say this

(list "Hee hee" person-name
"looks better in green!")))))

(define turn-into-frog
(lambda (person)
(for-each (lambda (item) (person/lose person item))

(person/possessions person))
(person/say person ’("Ribbitt!"))
(person/move-to person pond)
(registry/remove registry person)))

(define-class
’wizard
auto-person-class
’()
’())

(class/set-method!
wizard-class ’act
(lambda (this)
(let ((place (wizard/place this)))
(let ((scrolls (filter scroll?

(place/contents place))))

14.5 An Application: Adventures in the Land of Gack 561

(if (and (not (null? scrolls))
(not (eq? place chamber-of-wizards)))

(begin
(wizard/take this (car scrolls))
(wizard/move-to this chamber-of-wizards)
(wizard/lose this (car scrolls)))

(auto-person^act this))))))

At this point we have the entire class hierarchy for the Land of Gack—or rather,
the entire class hierarchy, as far as we’ve developed it for you. After you’ve played
(and become bored with) the existing game, you’ll be expected to invent new kinds
of characters, new and magical scrolls and other kinds of things, and maybe even
enchanted places that behave in unusual ways.

The next major component of the game, you will recall, is simply the “setting of
the stage”: in other words, the establishment of the specific individuals, places, and
things that constitute the Land of Gack. For example, this is where we decide that
the Land of Gack has (initially) only a single witch, named Barbara:

;; The "registry" is an object that keeps track of all
;; the auto-person objects that need to be given an
;; opportunity to act.

(define registry (make-registry))

;; Here we define the places in the imaginary world of Gack

(define food-service (make-place ’food-service))
(define PO (make-place ’PO))
(define alumni-hall (make-place ’alumni-hall))
(define chamber-of-wizards (make-place ’chamber-of-wizards))
(define library (make-place ’library))
(define good-ship-olin (make-place ’good-ship-olin))
(define lounge (make-place ’lounge))
(define computer-lab (make-place ’computer-lab))
(define offices (make-place ’offices))
(define dormitory (make-place ’dormitory))
(define pond (make-place ’pond))

;; One-way paths connect individual places in the world.

(place/add-new-neighbor food-service ’down PO)
(place/add-new-neighbor PO ’south alumni-hall)

562 Chapter 14 Object-oriented Programming

(place/add-new-neighbor alumni-hall ’north food-service)
(place/add-new-neighbor alumni-hall ’east chamber-of-wizards)
(place/add-new-neighbor alumni-hall ’west library)
(place/add-new-neighbor chamber-of-wizards ’west alumni-hall)
(place/add-new-neighbor chamber-of-wizards ’south dormitory)
(place/add-new-neighbor dormitory ’north chamber-of-wizards)
(place/add-new-neighbor dormitory ’west good-ship-olin)
(place/add-new-neighbor library ’east alumni-hall)
(place/add-new-neighbor library ’south good-ship-olin)
(place/add-new-neighbor good-ship-olin ’north library)
(place/add-new-neighbor good-ship-olin ’east dormitory)
(place/add-new-neighbor good-ship-olin ’up lounge)
(place/add-new-neighbor lounge ’west computer-lab)
(place/add-new-neighbor lounge ’south offices)
(place/add-new-neighbor computer-lab ’east lounge)
(place/add-new-neighbor offices ’north lounge)

;; We define persons as follows:

;; We’ve chosen to define max-the-person rather than
;; redefining max, which is predefined in Scheme to
;; be a procedure for finding the largest of its numeric
;; arguments.
(define max-the-person
(make-auto-person ’max offices 2))

(define karl
(make-auto-person ’karl computer-lab 4))

(define barbara
(make-witch ’barbara offices 3))

(define elvee
(make-wizard ’elvee chamber-of-wizards 1))

(define player
(make-person ’player dormitory))

;; and now we’ll strew some scrolls around:

(define scroll-of-enlightenment
(make-scroll ’scroll-of-enlightenment))

(place/gain library scroll-of-enlightenment)

14.5 An Application: Adventures in the Land of Gack 563

(for-each (lambda (title)
(place/gain library

(make-scroll title)))
’(crime-and-punishment war-and-peace

iliad
collected-works-of-rilke))

(define unix-programmers-manual
(make-scroll ’unix-programmers-manual))

(place/gain computer-lab unix-programmers-manual)

(define next-users-reference
(make-scroll ’next-users-reference))

(place/gain computer-lab next-users-reference)

Finally, we need a user interface for the game so that the player can say things like
(go north) instead of (person/go player ’north), as you would have to do to
play from the normal read-eval-print loop. The user interface also makes the game
more fun by triggering the registry after each move to give the automated persons
a chance to do their things. The user interface is entered via the play procedure,
by simply evaluating (play). This procedure is based on the pattern/action-list idea
we’ve seen in earlier chapters. Each command you can execute has a particular
pattern. For example, the pattern for commands like (go north) and (go up) is
(go _).

One additional kind of pattern has been added, beyond those described in Chap-
ter 7. A pattern can contain not only symbols and wild cards but also predicate
procedures. For example, the pattern for commands for taking things is made using
the expression (list ’take thing?), which makes a pattern rather like (take _),
except that the word after take is restricted to be the name of a thing that is in the
place where the player is. The requirement that the object satisfies the predicate (as
well as has the right name and is nearby) prevents you from committing kidnaping
by saying (take max), because Max is not a thing. A similar pattern, made using
(list ’read scroll?), ensures that you can only read scrolls, not other kinds of
things or people. These predicate wild cards also behave specially once it has been
determined that the pattern matches, and the action procedure is being applied. For
example, suppose you are in the library with the scroll-of-enlightenment and
you say (take scroll-of-enlightenment). The pattern matches, because the
scroll is a thing, has the right name, and is in the same place as the player. Now
the action procedure is applied. However, rather than being applied to the name
scroll-of-enlightenment, the way it would if the pattern were (take _), the
action procedure is instead applied to the scroll object itself.

564 Chapter 14 Object-oriented Programming

The code for the user interface is as follows:

(define difficulty 1)

(define play
(lambda ()
(define loop
(lambda ()
(newline)
(let ((user-input (read)))
(if (equal? user-input ’(quit))

’done
(begin
(respond-to-using user-input gack-p/a-list)
(loop))))))

(newline)
(display "Enter your name, using one word only, please.")
(newline)
(person/change-name player (read))
(display-message
(list "OK," (person/name player)

"enter your commands one by one"
"as scheme lists; to get help enter (help)."))

(loop)))

(define gack-p/a-list
(list (make-pattern/action ’(help)

(lambda ()
(newline)
(display "Possibilities:")
(newline)
(for-each (lambda (command)

(display " ")
(display command)
(newline))

’((help)
(quit)
(drop thing)
(lose thing)
(take thing)
;;(continued)

14.5 An Application: Adventures in the Land of Gack 565

(go direction)
(read scroll)
(inventory)
(list possessions)
(look)
(look around)
(say ...)))

(newline)))
(make-pattern/action (list ’(drop lose) thing?)

(lambda (verb thing)
(person/lose player thing)
(registry/trigger-times
registry difficulty)))

(make-pattern/action (list ’take thing?)
(lambda (thing)
(person/take player thing)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(go _)
(lambda (direction)
(person/go player direction)
(registry/trigger-times
registry difficulty)))

(make-pattern/action (list ’read scroll?)
(lambda (scroll)
(person/read player scroll)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(inventory)
(lambda ()
(person/list-possessions player)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(list possessions)
(lambda ()
(person/list-possessions player)
(registry/trigger-times
registry difficulty)))

(make-pattern/action ’(look)
(lambda ()
(person/look-around player)))

;;(continued)

566 Chapter 14 Object-oriented Programming

(make-pattern/action ’(look around)
(lambda ()
(person/look-around player)))

(make-pattern/action ’(say ...)
(lambda (stuff)
(person/say player stuff)
(registry/trigger-times
registry difficulty)))))

(define respond-to-using
(lambda (command p/a-list)
(cond ((null? p/a-list)

(display-message ’("I don’t understand.")))
((matches? (pattern (car p/a-list)) command)
(apply (action (car p/a-list))

(substitutions-in-to-match
(pattern (car p/a-list))
command)))

(else (respond-to-using command (cdr p/a-list))))))

;; The versions of matches? and substitutions-in-to-match
;; given below not only are after doing various chapter 7
;; exercises, but moreover have an additional feature that a
;; predicate can be used as one of the components of a pattern,
;; in which case it means that at that position in the command,
;; a symbol is needed that is the name of an item in the player’s
;; place that satisfies the predicate.

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((not (pair? question)) #f)
((equal? (car pattern) ’_)
(matches? (cdr pattern) (cdr question)))
((list? (car pattern))
(if (member (car question) (car pattern))

(matches? (cdr pattern)
(cdr question))

#f))
((equal? (car pattern) ’...) #t)
;;(continued)

14.5 An Application: Adventures in the Land of Gack 567

((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
((procedure? (car pattern))
(let ((object (object-with-name (car question))))
(if (and object

((car pattern) object))
(matches? (cdr pattern)

(cdr question))
#f)))

(else #f))))

(define substitutions-in-to-match
(lambda (pattern question)
(cond ((null? pattern)

(if (null? question)
’()
(error
"substitutions-in-to-match without a match")))

((not (pair? question))
(error "substitutions-in-to-match without a match"))
((equal? (car pattern) ’_)
(cons (car question)

(substitutions-in-to-match (cdr pattern)
(cdr question))))

((list? (car pattern))
(if (member (car question) (car pattern))

(cons (car question)
(substitutions-in-to-match (cdr pattern)

(cdr question)))
(error
"substitutions-in-to-match without a match")))

((equal? (car pattern) ’...) (list question))
((equal? (car pattern) (car question))
(substitutions-in-to-match (cdr pattern)

(cdr question)))
;;(continued)

568 Chapter 14 Object-oriented Programming

((procedure? (car pattern))
(let ((object (object-with-name (car question))))
(if (and object

((car pattern) object))
(cons object

(substitutions-in-to-match
(cdr pattern) (cdr question)))

(error
"substitutions-in-to-match without a match"))))

(else (error
"substitutions-in-to-match without a match")))))

(define object-with-name
(lambda (name)
(let ((objects (filter (lambda (obj)

(equal? (named-object/name obj)
name))

(place/contents
(person/place player)))))

(if (or (null? objects)
(not (null? (cdr objects))))

#f
(car objects)))))

Now it is time for you to take charge of the game.

Exercise 14.33

First you’ll need to familiarize yourself with the game. Load it and try playing the
following simple game, using the (play) procedure. Try to get from the dormitory
to the computer lab without getting turned into a frog along the way. To make it
more challenging, try to get to the lab possessing the scroll of enlightenment. If you
want, you can make the other characters move several times after each move of yours
(rather than just once) by redefining difficulty to be some number larger than 1.
Be sure to get familiar with the game’s other features too.

Exercise 14.34

Modify the Land of Gack so that there is a new scroll, called late-lab-report,
in the dormitory. Now you can play the game with a new goal: Pick up the
late-lab-report, go catch up with max, wherever he may have wandered to, and

14.5 An Application: Adventures in the Land of Gack 569

try to give max the report even though it’s late. You’ll need to add some additional
mechanisms to the person class and the interface’s pattern/action list to be able to
use a command like (give max late-lab-report) or (give late-lab-report
to max). Verify that at the end the lab report thinks max is its owner, max thinks
the lab report is one of his possessions, and player no longer thinks the lab report
is one of its possessions.

Exercise 14.35

Of course, you can make the game much more interesting by adding additional
twists. Implement some that interest you. We give a list of suggestions below but feel
free to come up with some of your own. Be sure to describe in English whatever
new ideas you introduce.

Add chocolate as a kind of thing. It should be able to be-eaten. When a chocolate
is eaten, the owner loses it and it is gone from the place where the owner is located.
You can optionally add cute sound effects or make a wrapper or some crumbs
appear at the place. Make some chocolates appear at food-service.
Modify the person class so people have an eat method that causes a chocolate
they own to be eaten, much like the read method.
Now that we have chocolates, we can modify the witch class to reflect a little-
known property of witches: They can be bought off with chocolates. Change the
act method so that if Barbara’s victim has any chocolates, Barbara will take and
eat one rather than turning the victim into a frog. Only victims who possess no
chocolates will become frogs. This makes the game more interesting in that you
have to decide whether to take the extra time to make a detour to food service for
chocolates or go for speed but risk being caught unprepared by Barbara.
If you want to make the game harder yet, you can make it difficult to hoard
protective chocolates by creating a troll who wanders around eating chocolates.
Perhaps you should change Max from being a normal person to being the troll—it
was probably just the fact that he wrote this section that kept him from being cast
as a troll in the first place.
Introduce magic scrolls into the game as an abstract subclass of scroll-class
that has a limited number of “charges” (let’s say n) and when read the first n
times invokes its do-magic method. Define one or more specific kinds of magic
scrolls as subclasses of the magic-scroll class with interesting do-magic methods;
for example, you might make a scroll-of-teleportation.
It makes the game rather easy if the title of a magic scroll tells what it does.
You could add a feature so that initially the name method of any magic scroll
just returns a-mysterious-scroll, but when you read the scroll the first time
the name changes to the actual title. This feature is particularly effective if you

570 Chapter 14 Object-oriented Programming

include scrolls with undesirable effects as well as desirable ones. Of course, you
could counter by including a scroll-of-identification that can be used to decode
the titles.
Currently Elvee, the wizard, always takes the first scroll at a place. Because some
scrolls are more valuable than others, this action can make the game boring.
Change the definition of the wizard class so wizards choose a scroll to take at
random.
Feel free to add you own interesting kinds of people, places and things.

Review Problems

Exercise 14.36

If you apply object/describe to most objects, you’ll see the instance variables
that constitute the object. On the other hand, if you apply object/describe
to a class object (such as item-class), you’ll instead see a description of the
class that the object represents, with detailed information such as the ancestor class
from which it inherits each inherited instance variable, method name, or method
implementation. How can you get a description of a class object that shows the
actual instance variables of the class object? (For example, the description should
make the method-set?-vector instance variable visible.)

Exercise 14.37

a. Write a procedure that returns a list of all the classes currently in existence. (It
should return the actual class objects, not the names of the classes.) Hint: See the
definition of show-class-hierarchy and also the material on tree traversal in
Chapter 8.

b. Write a predicate procedure that tests whether a given class has a given method
name.

c. Write a procedure, using the previous two, that returns a list of the class names
for all those classes in existence that have a given method name.

Exercise 14.38

In Section 13.5, we built a layered collection of data types: ranked-binary-trees,
binary-search-trees, and red-black-trees. This layering is suggestive
of object-oriented programming’s class hierarchy; we can imagine having
ranked-binary-tree as a base class, with binary-search-tree derived from
it as a subclass, and red-black tree derived further as a subclass of binary search
tree.

Review Problems 571

On closer examination, no reason exists to have ranked binary trees as the base.
After all, the notion of rank only becomes relevant when we build the red-black
tree abstraction. In Section 13.5, we had to include the ranks from the beginning
because only the procedures for operating on the trees changed from layer to layer;
the data representation stayed the same. Now with object-oriented programming, we
can add a new instance variable in a subclass rather than just adding new procedures
(methods).

Reimplement red-black trees in the object-oriented programming system. Start
with a base class that is just plain binary trees, without ranks. Then build the binary
search tree class as a subclass. Finally, implement red-black trees as a subclass of
binary search trees, which is where you’ll add the rank instance variable.

Exercise 14.39

When a method is overridden in a subclass, the new implementation should comply
with whatever the external specification of the method is so that users are not
surprised. For example, it would not be appropriate for a kind of item (in the
compu-duds example) to implement the display method by switching to a new
randomly selected color rather than by actually displaying the item’s description and
price. On the other hand, the specification will no doubt have some flexibility in
it; for example, we haven’t pinned down exactly what sort of “description” should
be displayed because if we were too precise about that, there would be no room to
accommodate different kinds of subclasses.

One interesting point is that depending which of several potential specifications
the designer chooses to articulate for a particular class and its methods, the exact
same subclass of that class might be either “in compliance” or “out of compliance”
with the specification, even though the specifications might all be reasonable for the
original class.

Give a concrete illustration of this phenomenon by defining a class and its subclass
and giving two reasonable specifications for the superclass, one of which leads to
the subclass being compliant and the other of which doesn’t. Also, write up some
thoughts on the subject of how a software designer should anticipate and cope with
this phenomenon.

Exercise 14.40

Suppose you wanted to change the Land of Gack so that it was possible to ask people
to introduce themselves; that is, you could do the following:

(person/introduce-self barbara)

or

572 Chapter 14 Object-oriented Programming

(person/introduce-self max-the-person)

or

(person/introduce-self elvee)

Whoever you ask to introduce themselves would then say

Hello, I'm barbara.

I'm known to be fond of chocolate and turning people into frogs.

Pleased to meet you.

or

Hello, I'm max.

Pleased to meet you.

or

Hello, I'm elvee.

I've got this problem with scrolls.

Pleased to meet you.

Note that the first and last lines are similar for all people, but what comes in between
(if anything) is particular to the given subclass of person-class. How would you
arrange for this dialogue in a way that takes full advantage of the class hierarchy?
Illustrate with sample code.

Exercise 14.41

In Exercise 14.34, you added to the Land of Gack the ability to give a scroll to
someone else. There the intent was to give the late lab report to Max. However, you
probably made the mechanism general enough that you could also give a scroll to
the wizard, Elvee. If you do this, you may later see Elvee (when he acts) trying to
take a scroll that he already has, which results in a message reporting this oddity.
Explain how this occurs and what can be done to eliminate this behavior.

Exercise 14.42

When a person says something in the Land of Gack, it is “heard” only by the player,
in that whatever is said gets displayed. It would be more interesting if other objects
within the Land of Gack itself could also hear—and potentially respond to—what
was said. That way you could have characters who behaved differently if you said
“please,” magic portals that opened when you said “open sesame,” etc.

Chapter Inventory 573

a. Add a method called named-object/hear that takes two arguments: the person
speaking and what was said. Put an implementation in the named-object-class
that does nothing because ordinary objects ignore what they hear.

b. Change the person/say method so that it invokes the named-object/hear
method of each object in the place where the person is speaking.

c. Now have fun introducing special classes of object that respond to what they hear.

Exercise 14.43

Write a procedure instance-of? that can be used to test whether a particular
object is an instance of a particular class. Examples of its use follow:

(instance-of? barbara witch-class)
#t

(instance-of? barbara person-class)
#t

(instance-of? barbara place-class)
#f

(instance-of? lounge place-class)
#t

Chapter Inventory

Vocabulary

object-oriented programming
class
class hierarchy
object-oriented design
subclass
superclass
object
instance
derived class
base class
ancestry
Unified Modeling Language (UML)
class diagram
association

multiplicity
class object
instance variable
inherit
method
method name
method implementation
override
getter
this or self
setter
instantiator
public
private

574 Chapter 14 Object-oriented Programming

garbage collection
augment (the superclass’s method)
abstract class
pure abstract class
bootstrapping
role (in a UML association)
virtual method

constraint (on a UML association)
association list
alist
simulation
adventure game
consistency condition

Classes

item-class
item-list-class
oxford-shirt-class
chinos-class
object-class
class-class
special-item-class
pants-class
thrifty-item-list-class
item-list-as-vector-class
item-list-as-list-class
registry-class

named-object-class
thing-class
place-class
person-class
auto-person-class
wizard-class
witch-class
scroll-class
chocolate-class
troll-class
magic-scroll-class

New Predefined Scheme Names

assq
string-append
load

Methods

item-list/add
item-list/display
item-list/total-price
item-list/delete
item-list/choose
item-list/empty?
item/input-specifics
item/display
item/revise-specifics
item/price
class/set-method!
object/init
item-list/init
object/describe

item-list/grow
item/init
special-item/input-specifics
oxford-shirt/init
oxford-shirt/display
oxford-shirt/input-specifics
chinos/init
chinos/display
chinos/input-specifics
class/predicate
class/instantiator
class/getter
class/setter
class/method

Chapter Inventory 575

class/non-overridable-method
class/ivar-position
class/method-position
auto-person/init
auto-person/maybe-act
registry/init
registry/add
registry/remove
registry/trigger
registry/trigger-times
named-object/init
named-object/name
named-object/change-name
thing/owned?
thing/init
thing/owner
thing/become-unowned
thing/become-owned-by
scroll/init
scroll/be-read
place/exits
place/neighbors
place/neighbor-towards
place/add-new-neighbor
place/init

place/gain
place/lose
place/contents
person/init
person/say
person/look-around
person/list-possessions
person/read
person/have-fit
person/move-to
person/go
person/take
person/lose
person/place
person/possessions
person/greet
person/other-people-at-same-place
auto-person/act
witch/act
witch/curse
wizard/act
chocolate/be-eaten
person/eat
magic-scroll/do-magic
magic-scroll/name

Objects From the Land of Gack

registry
food-service
PO
alumni-hall
chamber-of-wizards
library
good-ship-olin
lounge
computer-lab
offices
dormitory

pond
max-the-person
karl
barbara
elvee
player
scroll-of-enlightenment
unix-programmers-manual
next-users-reference
late-lab-report

576 Chapter 14 Object-oriented Programming

Other Scheme Names Defined in This Chapter

define-class
vector-copy!
display-price
input-integer-in-range
input-selection
compu-duds
input-item
show-class-hierarchy
unchecked-object/set-class!
apply-below
alist-from-onto
class-definitions

eval-globally
symbol-append
class-predicate-definition
delq
display-message
verbalize-list
turn-into-frog
play
difficulty
gack-p/a-list
respond-to-using
object-with-name

Notes

One version of the MIT adventure game we based ours on was published in [1].
We touched only briefly on the design of object-oriented software, emphasizing

the search for nouns in the problem statement as potential classes of objects and verbs
and implicit operations as potential methods. Books such as those of Rumbaugh [44]
and Booch [7] provide a much more extensive treatment of these issues of analyzing
a problem, modeling it in terms of objects, and designing the software. Another
important approach, complementing the finding of “natural objects” in the problem
specification, is the recognition of common patterns of object creation and behavior;
an excellent source-book for this approach is Design Patterns, by Gamma, Helm,
Johnson, and Vlissides [21].

In addition to these general topics of design, you may want to read up on the
concrete realization of object-oriented software in currently popular object-oriented
programming languages. At the time we are writing this book, the greatest enthusiasm
centers around the Java programming language. The next chapter contains a quick
introduction to Java, and the notes at the end of that chapter provide some suggestions
for further reading.

At the time of our writing, the only definitive source for information on UML
is the web site, http://www.rational.com/uml/; documentation published on
paper is still forthcoming. There is, however, an introductory overview book by
Fowler [18].

The techniques we used to implement the object-oriented programming system
are typical of those used for implementing such systems. Most of these techniques
have been used for decades. Surprisingly, however, one of them was published
as recently as 1991. That was the year when the technique we use for the class
predicates, based on ancestry vectors, was described by Norman Cohen [13].

