
A P P E N D I X

Nonstandard Extensions to Scheme

We presume the existence of the following predefined procedures, which are not
part of the R4RS standard for Scheme:

(error string value . . .) Signals an error to the user in some form. The string
should be a description of the error. There can be any number of values, and they
are also displayed to the user to further describe what went wrong.

(filled-triangle x0 y0 x1 y1 x2 y2) Produces a standard-sized square im-
age containing a filled-in triangle with vertices (x0, y0), (x1, y1), and (x2, y2). The
coordinate system for the vertices ranges from (21, 21) in the lower left corner
of the image to (1, 1) in the upper right corner.

(invert image) Produces a new image of the same size as image and with the
same contents as image except that black and white are reversed.

(line x0 y0 x1 y1) Produces a standard-sized square image containing a line
segment from (x0, y0) to (x1, y1). The coordinate system and size are the same as
for filled-triangle.

(overlay image1 image2) Produces a new image with the same size as image1

and image2, which must have the same width and height as each other. The
contents of the new image is formed by combining the contents of the two
existing images, much as though two transparencies were laid together.

(quarter-turn-right image) Produces a new image with the contents of
image turned 90 degrees clockwise. The width of the new image is the same
as image’s height, and the height of the new image is the same as image’s width.

645

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight



646 Appendix Nonstandard Extensions to Scheme

(random n) Produces a nonnegative integer, chosen in a pseudo-random fashion
from the range from 0 up to but not including n. The argument n must be an
exact positive integer. The n possible values are returned equally frequently over
the long run.

(stack image1 image2) Produces a new image by stacking the contents of
image1 on top of the contents of image2. The width of image1 must equal the
width of image2, which becomes the width of the resulting image. The height of
the resulting image is the sum of the heights of image1 and image2.

In addition to presuming the above non-R4RS procedures, we make use of several
features specified in the R4RS as being “inessential.” In other words, these are features
that the standard describes but does not require all implementations to provide. We
list below the inessential features we use, with some comments on how common it
is for an implementation to omit each feature and what impact such an omission
would have on using this book:

internal definitions The R4RS permits an implementation to not support nested
definitions inside the body of a lambda expression or let expression. Such an
implementation would be awkward to use with this book, because we use internal
definitions freely. However, such implementations are very rare.

disjointness of #f and () The R4RS allows a single value to be used as both false
and the empty list. It is relatively common for Scheme implementations to make
this choice. All our examples will work in such implementations, with the minor
exception that wherever we show #f in the output, () will be displayed instead.
(In input, #f should still be used.)

exact rationals Not every implementation needs to support exact rational num-
bers. This area is the one that is likely to cause the most trouble because relatively
many implementations have opted out of exact rationals and we use them moder-
ately freely in the early chapters. The book can be used with such an implemen-
tation, however, provided you are willing to work around a few difficulties as you
encounter them. For example, in most systems that only have inexact “floating
point” numbers, you will not be able to get an approximation to the golden ratio
that is good to one part in 1079 and will get an infinitely looping process if you
try. However, simply using a more tolerant tolerance will solve this problem.

the procedures sqrt, expt, denominator, list-tail, vector-fill!, and
with-output-to-file These predefined procedures are all labeled “inessen-
tial” by the R4RS. Nearly all implementations include sqrt and expt, so they
are unlikely to present a problem. The denominator procedure is used only
in approximating the golden ratio; it is only likely to be missing in implemen-
tations that don’t have exact rationals, and in such a case, the exercise could



Appendix Nonstandard Extensions to Scheme 647

simply be omitted. We define list-tail and vector-fill! in the text, so it
wouldn’t matter if they weren’t predefined. On the rare system that doesn’t sup-
port with-output-to-file, the examples using it can be rewritten to use the
essential procedure call-with-output-file.




